Demografske determinante energetske potrošnje u Evropskoj uniji: Rezultati ekonometrijske analize

Glavni sadržaj članka

Predrag Petrović
Goran Nikolić
Ivana Ostojić

Apstrakt

Upotreba fosilnih goriva jeste ključni generator štetnih gasova koji izazivaju efekat staklene bašte i dovode do globalnih klimatskih promena, zbog čega se upravljanje rastućom globalnom energetskom tražnjom nameće kao jedan od ključnih prioriteta. Ovaj članak je posvećen istraživanju najvažnijih demografskih i ekonomskih determinanti energetske potrošnje u 28 zemalja članica Evropske unije za vremenski period 1960-2014. godine. Analiza je sprovedena na osnovu logaritmovanog modifikovanog STIRPAT modela primenom tehnika ekonometrijske analize panel podataka. Dobijeni rezultati pokazuju da obe posmatrane demografske varijable (ukupan broj stanovnika i udeo starih 65 i više godina u ukupnom broju stanovnika) vrše pozitivan uticaj na potrošnju energije. Povećanje broja stanovnika za 1% dovodi do rasta potrošnje energije između 1,59% i 1,76%. Takođe, rast udela stanovništva sa 65 i više godina od 1% rezultuje povećanjem energetske potrošnje od oko 0,43%. Visoka elastičnost potrošnje energije u odnosu na broj stanovnika najverovatnije se može objasniti činjenicom da demografski rast otežava i usložnjava procese planiranja efikasne upotrebe energetskih resursa. Pozitivnu elastičnost u odnosu na udeo starije populacije treba shvatiti kao dokaz da evropska društva sa većim udelom starije populacije troše više energije od društava sa većim udelom mlađeg stanovništva. Osim toga, nalazi ove studije upućuju na zaključak da važan uticaj na potrošnju energije u EU vrši i nivo ekonomske aktivnosti zemalja i to u skladu sa konceptom Kuznjecove krive okruženja (EKC). Nivo per capita dohotka koji je potreban da bi se EKC efekat ispoljio kreće se između 54.183 i 81.552 dolara.

Preuzimanja

Podaci o preuzimanju još uvek nisu dostupni.

Detalji članka

Kako citirati
Petrović, P., Nikolić, G., & Ostojić, I. (2017). Demografske determinante energetske potrošnje u Evropskoj uniji: Rezultati ekonometrijske analize. Stanovništvo, 55(1), 1–20. https://doi.org/10.2298/STNV170606003P
Broj časopisa
Sekcija
Članci

Reference

ADOM, P. K., & KWAKWA, P.A. (2014). Effects of changing trade structure and technical characteristics of the manufacturing sector on energy intensity in Ghana. Renewable and Sustainable Energy Reviews 35: 475–483. https://doi.org/10.1016/j.rser.2014.04.014

BALTAGI, H. B., FENG, Q., & KAO, C. (2012). A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model. Journal of Econometrics 170(1): 164–177. https://doi.org/10.1016/j.jeconom.2012.04.004

BOE, P. A., BLANDFORD, A., & PATRICK, A. (2015). Modeling United States energy consumption 1970-2040. Frankfort (Kentucky): Energy and Environment Cabinet, Department for Energy Development and Independence (Intern Research Project). http://energy.ky.gov/Programs/Data%20Analysis%20%20Electricity%20Model/Modeling_US_Energy_Consumption.pdf

BREUSCH, S. T., & PAGAN, R. A. (1980). The Lagrange Multiplier test and its applications to model specification in econometrics. The Review of Economic Studies 47(1): 239‒253. https://www.jstor.org/stable/2297111?seq=1#page_scan_tab_contents

CHOI, I. (2001). Unit root tests for panel data. Journal of International Money and Finance 20: 249‒272. https://doi.org/10.1016/S0261-5606(00)00048-6

COLE, M. A., & NEUMAYER, E. (2004). Examining the Impact of Demo-graphic Factors on Air Pollution. Population and Environment 26(1): 5–21. https://doi.org/10.1023/B:POEN.0000039950.85422.eb

CRAMER, J. C. (1998). Population Growth and Air Quality in California. Demography 35(1): 45–56. http://www.jstor.org/stable/3004026

DEHART, J. L., & SOULÉ, P. T. (2000). Does I = PAT Work in Local Places? Professional Geographer 52(1): 1–10. DOI: 10.1111/0033-0124.00200

DIETZ, T., & ROSA, E. A. (1994). Rethinking the Environmental Impacts of Population, Affluence and Technology. Human Ecology Review 1(2): 277–300. http://www.humanecologyreview.org/pastissues/her12/12dietzosa.pdf

DIETZ, T., & ROSA, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences of the USA 94(1): 175–179. http://www.pnas.org/content/94/1/175.full

DINDA, S. (2004). Environmental Kuznets Curve Hypothesis: A Survey. Ecological Economics 49: 431–455. https://doi.org/10.1016/j.ecolecon.2004.02.011

EHRHARDT-MARTINEZ, K. (1998). Social Determinants of Deforestation in Developing Countries: A Cross-National Study. Social Forces 77(2): 567–586.

FOSTER, J. B. (1999). Marx’s Theory of Metabolic Rift: Classical Foundation for Environmental Sociology. American Journal of Sociology 105(2): 366–405. DOI: 10.1086/210315

GALLI, R. (1998). The relationship between energy intensity and income levels: forecasting long term energy demand in Asian Emerging Countries. The Energy Journal 19(4): 85–106. http://www.jstor.org/stable/41322805

HOLDREN, J. P. (1991). Population and the energy problem. Population and Environment 12(3): 231–255. https://doi.org/10.1007/BF01357916

HUBLER, M., & KELLER, A. (2009). Energy savings via FDI? Empirical evidence from developing countries. Environment and Development Economics 15(1): 59–80. https://doi.org/10.1017/S1355770X09990088

IM, K. S., PESARAN, M. H., & SHIN, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7

IPCC (2014). Climate Change 2014: Synthesis Report. Fifth Assessment Report. [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: Intergovernmental Panel on Climate Change. http://www.ipcc.ch/report/ar5/syr/

JONES, D. W. (1991). How urbanization affects energy use in developing countries. Energy Policy 19(7): 621-630. https://doi.org/10.1016/0301-4215(91)90094-5

KERR, A. R. (1998). The Next Oil Crisis Looms Large--and Perhaps Close. Science 281(5380): 1128‒1131. DOI: 10.1126/science.281.5380.1128

LEVIN, A., LIN, C. F., & CHU, C. (2002). Unit root test in panel data: Asymptotic and finite sample properties. Journal of Econometrics 108(1): 1–24. https://doi.org/10.1016/S0304-4076(01)00098-7

MAZZANTI, M., MUSOLESI, A., & ZOBOLI, R. (2006). A Bayesian approach to the estimation of Environmental Kuznets Curves for CO2 emissions. Fondazione Eni Enrico Mattei (Working Paper 121/06).

MISHRA, V., RUSSELL, R., & SHARMA, S. (2009). The energy-GDP nexus: Evidence from a panel of Pacific Island countries. Resource and Energy Economics 31(3): 210–220. https://doi.org/10.1016/j.reseneeco.2009.04.002

PACIONE, M. (2009). Urban Geography ‒ A Global Perspective. New York: Routledge.

PARIKH, J., & SHUKLA, V. (1995). Urbanization, energy use and greenhouse effects in economic development. Global Environmental Change 5(2): 87‒103. https://doi.org/10.1016/0959-3780(95)00015-G

PEDRONI, P. (1999). Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxford Bulletin of Economics and Statistics 61(S1): 653‒670. DOI: 10.1111/1468-0084.0610s1653

PESARAN, M. H. (2004). General Diagnostic Tests for Cross-Section Dependence in Panels. Cambridge Working Papers in Economics (Working Paper 35/04). https://doi.org/10.17863/CAM.5113

PESARAN, M. H. (2007). A simple panel unit root test in the presence of cross section dependence. Journal of Applied Econometrics 22(2): 249‒272. DOI: 10.1002/jae.951

POUMANYVONG, P., & KANEKO, S. (2010). Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecological Economics 70(2): 434‒444. https://doi.org/10.1016/j.ecolecon.2010.09.029

ROSA, E. A., & DIETZ, T. (1998). Climate Change and Society: Speculation, Construction and Scientific Investigation. International Sociology 13(4): 421–455. DOI: 10.1177/026858098013004002

ROSA, E. A., YORK, R., & DIETZ, T. (2004). Tracking the Anthropogenic Drivers of Ecological Impacts. Ambio: A Journal of the Human Environment 33(8): 509–512. https://doi.org/10.1579/0044-7447-33.8.509

SHANDRA, J. M., LONDON, B., WHOOLEY, O. P., & WILLIAMSON, J. B. (2004). International Non-Governmental Organizations and Carbon Dioxide Emissions in the Developing World: A Quantitative, Cross National Analysis. Sociological Inquiry 74(4): 520–545. DOI: 10.1111/j.1475-682X.2004.00103.x

SHI, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological Economics 44(1): 29–42. https://doi.org/10.1016/S0921-8009(02)00223-9

WESTERLUND, J. (2007). Testing for error Correction in Panel Data. Oxford Bulletin of Economics and Statistics 69(6): 709‒748. DOI: 10.1111/j.1468-0084.2007.00477.x

YORK, R. (2007). Demographic trends and energy consumption in European Union Nations, 1960–2025. Social Science Research 36(3): 855–872. https://doi.org/10.1016/j.ssresearch.2006.06.007

YORK, R., ROSA, E. A., & DIETZ, T. (2003a). STIRPAT, IPAT, and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics 46(3): 351–365. https://doi.org/10.1016/S0921-8009(03)00188-5

YORK, R., ROSA, E. A., & DIETZ, T. (2003b). A rift in modernity? Assessing the anthropogenic sources of global climate change with the STIRPAT model. International Journal of Sociology and Social Policy 23(10): 31–51. https://doi.org/10.1108/01443330310790291

YORK, R., ROSA, E. A., & DIETZ, T. (2003c). Footprints on the Earth: The Environmental Consequences of Modernity. American Sociological Review 68(2): 279–300. http://www.jstor.org/stable/1519769