Prostorno-vremenska analiza dinamike pandemije COVID-19 u ranoj fazi u Srbiji na osnovu polno-starosne strukture obolelog stanovništva
Glavni sadržaj članka
Apstrakt
Pandemija COVID-19 eskalirala je u gotovo svim krajevima sveta u veoma kratkom periodu. Brzina širenja pandemije bila je determinisana stepenom mobilnosti stanovništva, a rizik od težine oboljenja i smrtnosti bio je uslovljen demografskim karakteristikama i zdravstvenim statusom stanovništva, kao i kapacitetima zdravstvenog sistema za lečenja pacijenata.
Ovaj rad ima cilj da proceni prostorno-vremenske obrasce stanovništva obolelog od bolesti COVID-19, prema polnoj i starosnoj strukturi, u Srbiji u ranoj fazi, kao i to da li su ti obrasci povezani sa merama javnog zdravlja koje su bile na snazi u tom periodu. S ciljem utvrđivanja lokalnih varijacija i statistički značajnog prostornog grupisanja broja obolelih na 100.000 stanovnika opštine u periodu od 15. aprila do 9. juna, korišćen je lokalni indikator prostorne autokorelacije — Lokalni Moran indeks. Analiza statistički značajne promene trenda broja obolelih (u ukupnom stanovništvu i na osnovu polno-starosne strukture), kao i broja umrlih u istom periodu, procenjeni su pomoću Joinpoint softvera za analizu trenda. Takođe, identifikovan je trenutak kada se statistički značajna promena u trendu dogodila i kvantifikovana je u procentima.
Rezultati su pokazali da postoji izrazita polarizacija prostornog grupisanja broja obolelih od bolesti COVID-19 u ranoj fazi. Tako, primetno je prostorno grupisanje opština sa višim relativnim vrednostima broja obolelih na jugu i jugoistoku, dok se klaster opština sa nižim vrednostima zapaža na severu Srbije. Promena u trendu broja obolelih, u smislu zamene opadajućeg trenda rastućim, usledila je nakon odluke o popuštanju mera (ponovno otvaranje kafića, restorana, frizerskih salona, teretana, tržnih centara itd.), što je uslovilo povećanu interakciju među stanovništvom. Kada je u pitanju promena trenda broja obolelih među polovima, nisu identifikovane značajne razlike. Međutim, prilikom istraživanja promena trenda prema starosnoj strukturi obolelog stanovništva, razlike su izraženije. Rastući trend broja obolelih starosne grupe do 19 godina usledio je nešto više od dve nedelje nakon ponovnog otvaranja vrtića, osnovnih i srednjih škola, kao i produženog boravka. Sličan trend zabeležen je i kod stanovništva starosti od 20 do 64 godina. Kohorta radno sposobnog stanovništva imala je najveći stepen slobode kretanja za vreme vanrednog stanja, ali i nakon njegovog ukidanja (6. maj). Kod stanovništva starijeg od 65 godina primetna je smena opadajućeg, rastućeg i, na kraju analiziranog perioda, ponovo opadajućeg trenda. Dobijeni nalazi mogu pružiti značajne informacije donosiocima odluka i kreatorima politike javnog zdravlja i poslužiti kao smernica za buduće ciljane mere ka određenim područjima i starosnim kategorijama stanovništva pri sprečavanju ili ublažavanju širenja pandemije COVID-19.
Preuzimanja
Detalji članka
Ovaj rad je pod Creative Commons Autorstvo-Nekomercijalno 4.0 Internacionalna licenca.
Centar za demografska istraživanja Instituta društvenih nauka
Reference
Ajbar, S., Asif, M., & Ajbar, A. M. (2021). Did domestic travel restrictions slow down the COVID-19
pandemic in Saudi Arabia? A joinpoint regression analysis. Journal of Global Health Reports, 5, e2021024. https://doi.org/10.29392/001c.21941
Al Hasan, S. M., Saulam, J., Kanda, K., Ngatu, N. R., & Hirao, T. (2021). Trends in COVID-19 Outbreak in Tokyo and Osaka from January 25 to May 6, 2020: a Joinpoint Regression Analysis of the Outbreak Data. Japanese Journal of Infectious Diseases, 74(1), 73–75. https://doi.org/10.7883/yoken.JJID.2020.332
Andersen, M. (2020). Early Evidence on Social Distancing in Response to COVID-19 in the United States. SSRN. Retrieved from http://dx.doi.org/10.2139/ssrn.3569368
Anselin, L. (1995). Local indicators of spatial association – LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Ashworth, T. R., Strasser, S., Brooks, B., & Zheng, S. (2021). COVID-19 trends in Tennessee and the United States over 40 weeks. Biometrics & Biostatistics International Journal, 10(2), 59–66. Retrieved from https://medcraveonline.com/BBIJ/BBIJ-10-00331.pdf
Betron, M., Gottert, A., Pulerwitz, J., Shattuck, D., & Stevanovic-Fenn, N. (2020). Men and COVID-19: Adding a gender lens. Global Public Health, 15(7), 1090–1092. https://doi.org/10.1080/17441692.
1769702
Božović, T., Blešić, I., Nedeljković Knežević, M., Đeri, L., & Pivac, T. (2021). Resilience of tourism
employees to changes caused by COVID-19 pandemic. Journal of the Geographical Institute “Jovan Cvijić” SASA, 71(2), 181–194. https://doi.org/10.2298/IJGI2102181B
Capuano, A., Rossi, F., & Paolisso, G. (2020). Covid-19 Kills More Men than Women: An Overview of
Possible Reasons. Frontiers in cardiovascular medicine, 7, 131. https://doi.org/10.3389/fcvm.2020.00131
Chaurasia, A. R., & Singh, B. P. (2020). COVID-19 Trend and Forecast in India: A Joinpoint Regression Analysis. Demography India, 49, 15–26. https://doi.org/10.1101/2020.05.26.20113399
Cvetković, V. M., Nikolić, N., Radovanović Nenadić, U., Öcal, A., K., Noji, E., & Zečević, M. (2020).
Preparedness and Preventive Behaviors for a Pandemic Disaster Caused by COVID-19 in Serbia.
International Journal of Environmental Research and Public Health. 17(11), 4124. https://doi.org/10.
/ijerph17114124
Daniel, S. J. (2020). Education and the COVID-19 pandemic, Prospects, 49, 91–96. https://doi.org/10.1007/s11125-020-09464-3
Demirović Bajrami, D., Terzić, A., Petrović, M. D., Radovanović, M., Tretiakova, T. N., & Hadoud, A. (2021). Will we have the same employees in hospitality after all? The impact of COVID-19 on employees’ work attitudes and turnover intentions. International Journal of Hospitality Management, 94, 102754. https://doi.org/10.1016/j.ijhm.2020.102754
Esri (2022). How Cluster and Outlier Analysis (Anselin Local Moran’s I) works. Retrieved from https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm
Esri (2020). ArcGIS Pro (version 2.5) [Computer software, 2020]. Retrieved from https://arcgis.pro/download-arcgis-pro-2-5/
European Centre for Disease Control and Prevention (2020). Coronavirus disease 2019 (COVID-19) in the EU/EEA and the U.K. – eighth update. Retrieved from https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-rapid-risk-assessment-coronavirus-disease-2019-eighth-update-8-april-2020.pdf
Kim, H. J., Fay, M., Feuer, E. J., & Midthune, D. N. (2000). Permutation tests for joinpoint regression with applications to cancer rates. Statistics in Medicine, 19, 335–351. https://doi.org/10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z
Kim, H., Fox, A. M., Kim, Y., Kim, R., Bae, G., & Kang, M. (2021). Is the male disadvantage real? Cross-national variations in sex gaps in COVID-19 incidence and mortality. Global Public Health, 16(12), 1793–1803. https://doi.org/10.1080/17441692.2021.1981972
Klempić Bogadi, S. (2021). The older population and the COVID-19 pandemic: The case of Croatia.
Stanovništvo, 59(1), 31–46. https://doi.org/10.2298/STNV210406003K
Kuleto, V., Ilić, M., Šević, N., Ranković, M., Stojaković, D., & Dobrilović. M. (2021). Factors Affecting the Efficiency of Teaching Process in Higher Education in the Republic of Serbia during COVID-19.
Sustainability, 13(23), 12935. https://doi.org/10.3390/su132312935
Lagos, D. G., Poulaki, P., & Lambrou, P. (2021). COVID-19 and Its Impact on Tourism Industry. Advances in Experimental Medicine and Biology, 1318, 815–824. https://doi.org/10.1007/978-3-030-63761-3_45
Le, T. D., Bosworth, M., Ledlow, G., Le, T. T., Bell, J., & Singh, K. P. (2021). Influences of reopening
businesses and social venues: COVID-19 incidence rate in East Texas county. Epidemiology & Infection, 149, e28. https://doi.org/10.1017/S0950268821000121
Lee, P-I., Hu, Y-L., Chen, P-Y., Huang, Y-C., & Hsueh, P-R. (2020). Are children less susceptible to COVID-19? Journal of Microbiology, Immunology, and Infection, 53(3), 371–372. https://doi.org/10.1016/j.jmii.2020.02.011
Liu, K., Chen, Y., Lin, R., & Han, K. (2020). Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. Journal of Infection, 80, e14–e18. https://doi.org/10.1016/j.jinf.2020.03.005
Lović Obradović, S., Krivošejev, V., & Yamashkin, A. A. (2020). Utilization of hot spot analysis in the
detection of spatial determinants and clusters of the Spanish flu mortality. Journal of the Geographical Institute “Jovan Cvijić” SASA, 70(3), 289–297. https://doi.org/10.2298/IJGI2003289L
Lović Obradović, S., & Matović, S. (2020). Application of spatial analysis in the detection of population at risk from COVID-19 in Serbia. Paper presented at “Demographic aspects of the COVID-19 pandemic”, Vienna, Austria, November 30–December 1. Retrieved from https://www.oeaw.ac.at/fileadmin/subsites/Institute/VID/PDF/Conferences/2020/COVID19/Posters/2.5_lovic_obradovic.pdf
Lović Obradović, S., Matović, S., & Filipović, M. (2021). Spatial-demographic patterns of the population infected with COVID-19 in Serbia in early stage. Paper presented at “International Demographic Forum, Demography and Global Challenges”, Voronezh, Russia, September 30–October 2. Retrieved from https://www.elibrary.ru/item.asp?id=47171357&pff=1
Lukić, V., Predojević-Despić, J., Janeska, V., & Lozanoska, A. (2021). How is COVID-19 reshaping temporary and circular labour migration: Serbia and North Macedonia perspectives. Forum Geografic, 20(1), 53–65. http://dx.doi.org/10.5775/fg.2021.051.i
Marinković, I., & Galjak, M. (2021a). Excess mortality in Europe and Serbia during the COVID-19 pandemic in 2020. Stanovništvo, 59(1), 61–73. https://doi.org/10.2298/STNV2101061M
Marinković, I., & Galjak, M. (2021b). Effects of the COVID-19 pandemic on mortality in Serbia in 2020. Teme, 45(4), 1261–1273. https://doi.org/10.22190/TEME210901070M
Mitchell, A. (2015). The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics. San Francisco, CA: Esri Press.
Modig, K., Ahlbom, A., & Ebeling, M. (2021). Excess mortality from COVID-19: weekly excess death rates by age and sex for Sweden and its most affected region. European Journal of Public Health, 31(1), 17–22. https://doi.org/10.1093/eurpub/ckaa218
Naqvi, A. (2020). COVID-19: Visualizing regional socioeconomic indicators for Europe. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. Retrieved from https://iiasa.ac.at/web/home/about/news/covid19maps.pdf
Open data portal (2020). Dnevni izveštaj Instituta za javno zdravlje Srbije o zaraženim licima na teritoriji Republike Srbije [Daily report of the Institute of Public Health of Serbia on infected persons on the territory of the Republic of Serbia]. Statistical database. Retrieved from https://data.gov.rs/sr/datasets/covid-19-dnevni-izveshtaj-instituta-za-javno-zdravlje-srbije-o-zarazhenim-litsima-na-teritoriji-republike-srbije/
Podra, O., Petryshyn, N., Bayik, O., Bobko, U., & Levkiv, H. (2021). The impact of COVID-19 pandemic on the volume of labor migration, employment, and remittances. Journal of the Geographical Institute “Jovan Cvijić” SASA, 71(2), 195–202. https://doi.org/10.2298/IJGI2102195P
Rafiemanesh, H., Rajaei-Behbahani, N., Khani, Y., Hosseini, S., Pournamdar, Z., Mohammadian-Hafshejani, . . . & Salehiniya, H. (2015). Incidence Trend and Epidemiology of Common Cancers in the Center of Iran. Global Journal of Health Science, 8(3), 146–155. https://doi.org/10.5539/gjhs.v8n3p146
Simetin, I. P., Svajda, M., Ivanko, P., Dimnjakovic, J., Belavic, A., Istvanovic, A., & Poljicanin, T. (2021). COVID-19 incidence, hospitalizations and mortality trends in Croatia and school closures. Public Health, 198, 164–170. https://doi.org/10.1016/j.puhe.2021.07.030
Siqueira, C. A. d. S., de Freitas, Y. N. L., Cancela, M. d. C., Carvalho, M., Oliveras-Fabregas, A., & de Souza, D. L. B. (2020). The effect of lockdown on the outcomes of COVID-19 in Spain: An ecological study. PLoS ONE, 15(7), e0236779. https://doi.org/10.1371/journal.pone.0236779
Statistical Methodology and Applications Branch, Surveillance Research Program, National Cancer Institute (2021). Joinpoint Regression Program (Version 4.9.0.0). Computer software. Retrieved from https://surveillance.cancer.gov/joinpoint/download
Statistical Office of the Republic of Serbia (2021). Population estimates by age and sex, comparative
overview on the municipality level. Statistical database. Retrieved from https://data.stat.gov.rs/Home/Result/18010602?languageCode=en-US
Šantić, D., & Antić, M. (2020). Serbia in the time of COVID-19: between “corona diplomacy”, tough measures and migration management. Eurasian geography and economic, 61(4-5), 546–558. https://doi.org/10.1080/15387216.2020.1780457
Šantić, D., Todorović, M., & Perišić, N. (2021). The ‘New Normal’ in Migration Management in Serbia in Times of the COVID-19 Crisis. Journal of Balkan and Near Eastern Studies, 24(3), 557-575. https://doi.org/10.1080/19448953.2021.2015659
Tadić, M., & Manić, E. (2022). Geographical Position of Serbia. In E. Manić, V. Nikitović., & P. Djurović (Eds.), The Geography of Serbia (pp. 3–6). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-74701-5_1
World Health Organization (2020). Coronavirus (COVID-19) Cases and Deaths. Datasets. Retrieved from https://data.humdata.org/dataset/coronavirus-covid-19-cases-and-deaths