Integrating advanced technologies for enhanced demographic research and urban planning
Main Article Content
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Published by the Institute of Social Sciences - Center for Demographic Research
References
Catry, T., Li, Z., Roux, E., Herreteau, V., Revillion, C., & Dessay, N. (2016). Fusion of SAR and Optical Imagery for Studying the Eco-Epidemiology of Vector-Borne Diseases in Tropical Countries (Vol. 740, 8). Paper presented at Living Planet Symposium, Prague: ESA-SP. https://ui.adsabs.harvard.edu/abs/2016ESASP.740E...8C. Accessed 12 May 2024
De Marinis, P., Manfron, G., Sali, C., Provolo, G., Facchi, A., & Sali, G. (2018). INTEGRATING REMOTE SENSING AND CENSUS INFORMATION FOR LAND SECURING IN NORD KIVU, DRC. Journal of Universities and international development Cooperation, (1), 288–310. https://air.unimi.it/retrieve/dfa8b9a1-6019-748b-e053-3a05fe0a3a96/Paper_CUCS2017_DRC_SDT_final.pdf
Hensel, M., & Bier, H. (2022). Interdisciplinary Data-integrated Approaches. SPOOL, 9(1), 3–4. https://doi.org/10.47982/spool.2022.1.00 DOI: https://doi.org/10.47982/spool.2022.1.00
Liu, C., Chen, Y., Wei, Y., & Chen, F. (2023). Spatial Population Distribution Data Disaggregation Based on SDGSAT-1 Nighttime Light and Land Use Data Using Guilin, China, as an Example. Remote Sensing, 15(11), 2926. https://doi.org/10.3390/rs15112926 DOI: https://doi.org/10.3390/rs15112926
Noor, N., & Rosni, N. A. (2017, June). The evolution of UAVs applications in urban planning. Coordinates, XIII(06), 36–40. https://mycoordinates.org/the-evolution-of-uavs-applications-in-urban-planning/
Potić, I., Komazec, N., Mihajlović, L., Milić, A., & Bakrač, S. (2023). Risk management of unexploded ordnance in the Republic of Serbia for environmental protection: Borovac case study. Vojnotehnicki glasnik, 71(4), 1087–1114. https://doi.org/10.5937/vojtehg71-44656 DOI: https://doi.org/10.5937/vojtehg71-44656
Preethi Latha, T., Naga Sundari, K., Cherukuri, S., & Prasad, M. V. V. S. V. (2019). REMOTE SENSING UAV/DRONE TECHNOLOGY AS A TOOL FOR URBAN DEVELOPMENT MEASURES IN APCRDA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 525–529. https://doi.org/10.5194/isprs-archives-XLII-2-W13-525-2019 DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W13-525-2019
Robinson, C., Hohman, F., & Dilkina, B. (2017). A Deep Learning Approach for Population Estimation from Satellite Imagery. In Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities (47–54). Paper presented at SIGSPATIAL’17: 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach CA USA: ACM. https://doi.org/10.1145/3149858.3149863 DOI: https://doi.org/10.1145/3149858.3149863
Šimunić, V., & Potić, I. (2021). Prostorne informacije o neformalnim objektima u službi upravljanja rizicima i prostornog planiranja. In 17. Letnja škola urbanizma i održivog razvoja: Iskustva i perspektive urbanističkog planiranja sa jednostepenim konceptom plana kao osnovnim; Uloga geoprostornih podataka u društvu - e-prostor (273–281). Vrnjačka Banja, Srbija: Udruženje urbanista Srbije.
Singh, K. S., & Sisodia, S. V. (2019). System and Method of Population Census Based on Vision and Remote Sensing. International Journal of Scientific Research and Reviews, 08(04), 254–267. https://doi.org/10.37794/IJSRR.2019.8418 DOI: https://doi.org/10.37794/IJSRR.2019.8418
Stevenson, M., Mues, C., & Bravo, C. (2022). Deep residential representations: Using unsupervised learning to unlock elevation data for geo-demographic prediction. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 378–392. https://doi.org/10.1016/j.isprsjprs.2022.03.015 DOI: https://doi.org/10.1016/j.isprsjprs.2022.03.015
Tenedório, J. A., Estanqueiro, R., Matos Lima, A., & Marques, J. (2016). Remote sensing from unmanned aerial vehicles for 3D urban modelling: case study of Loulé, Portugal. In Back to the Sense of the City: International Monograph Book (1118–1128). Paper presented at Virtual City and Territory, Centre de Política de Sòl i Valoracions. https://doi.org/10.5821/ctv.8147 DOI: https://doi.org/10.5821/ctv.8147
Yagoub, M. M., Tesfaldet, Y. T., AlSumaiti, T., Al Hosani, N., & Elmubarak, M. G. (2024). Estimating population density using open-access satellite images and geographic information system: Case of Al Ain city, UAE. Remote Sensing Applications: Society and Environment, 33, 101122. https://doi.org/10.1016/j.rsase.2023.101122 DOI: https://doi.org/10.1016/j.rsase.2023.101122
Yang, X., Ye, T., Zhao, N., Chen, Q., Yue, W., Qi, J., … Jia, P. (2019). Population Mapping with Multisensor Remote Sensing Images and Point-Of-Interest Data. Remote Sensing, 11(5), 574. https://doi.org/10.3390/rs11050574 DOI: https://doi.org/10.3390/rs11050574
Zhao, X., Zhou, Y., Chen, W., Li, X., Li, X., & Li, D. (2021). Mapping hourly population dynamics using remotely sensed and geospatial data: a case study in Beijing, China. GIScience & Remote Sensing, 58(5), 717–732. https://doi.org/10.1080/15481603.2021.1935128 DOI: https://doi.org/10.1080/15481603.2021.1935128