Integrating advanced technologies for enhanced demographic research and urban planning

Main Article Content

Ivan Potić


Download data is not yet available.

Article Details

How to Cite
Potić, I. (2024). Integrating advanced technologies for enhanced demographic research and urban planning. Stanovnistvo, 62(1), 169–173.
Reviews & Reflections
Author Biography

Ivan Potić, Military Geographical Institute – “General Stevan Bošković”, Belgrade (Serbia)

Research Associate


Catry, T., Li, Z., Roux, E., Herreteau, V., Revillion, C., & Dessay, N. (2016). Fusion of SAR and Optical Imagery for Studying the Eco-Epidemiology of Vector-Borne Diseases in Tropical Countries (Vol. 740, 8). Paper presented at Living Planet Symposium, Prague: ESA-SP. Accessed 12 May 2024

De Marinis, P., Manfron, G., Sali, C., Provolo, G., Facchi, A., & Sali, G. (2018). INTEGRATING REMOTE SENSING AND CENSUS INFORMATION FOR LAND SECURING IN NORD KIVU, DRC. Journal of Universities and international development Cooperation, (1), 288–310.

Hensel, M., & Bier, H. (2022). Interdisciplinary Data-integrated Approaches. SPOOL, 9(1), 3–4. DOI:

Liu, C., Chen, Y., Wei, Y., & Chen, F. (2023). Spatial Population Distribution Data Disaggregation Based on SDGSAT-1 Nighttime Light and Land Use Data Using Guilin, China, as an Example. Remote Sensing, 15(11), 2926. DOI:

Noor, N., & Rosni, N. A. (2017, June). The evolution of UAVs applications in urban planning. Coordinates, XIII(06), 36–40.

Potić, I., Komazec, N., Mihajlović, L., Milić, A., & Bakrač, S. (2023). Risk management of unexploded ordnance in the Republic of Serbia for environmental protection: Borovac case study. Vojnotehnicki glasnik, 71(4), 1087–1114. DOI:

Preethi Latha, T., Naga Sundari, K., Cherukuri, S., & Prasad, M. V. V. S. V. (2019). REMOTE SENSING UAV/DRONE TECHNOLOGY AS A TOOL FOR URBAN DEVELOPMENT MEASURES IN APCRDA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 525–529. DOI:

Robinson, C., Hohman, F., & Dilkina, B. (2017). A Deep Learning Approach for Population Estimation from Satellite Imagery. In Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities (47–54). Paper presented at SIGSPATIAL’17: 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach CA USA: ACM. DOI:

Šimunić, V., & Potić, I. (2021). Prostorne informacije o neformalnim objektima u službi upravljanja rizicima i prostornog planiranja. In 17. Letnja škola urbanizma i održivog razvoja: Iskustva i perspektive urbanističkog planiranja sa jednostepenim konceptom plana kao osnovnim; Uloga geoprostornih podataka u društvu - e-prostor (273–281). Vrnjačka Banja, Srbija: Udruženje urbanista Srbije.

Singh, K. S., & Sisodia, S. V. (2019). System and Method of Population Census Based on Vision and Remote Sensing. International Journal of Scientific Research and Reviews, 08(04), 254–267. DOI:

Stevenson, M., Mues, C., & Bravo, C. (2022). Deep residential representations: Using unsupervised learning to unlock elevation data for geo-demographic prediction. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 378–392. DOI:

Tenedório, J. A., Estanqueiro, R., Matos Lima, A., & Marques, J. (2016). Remote sensing from unmanned aerial vehicles for 3D urban modelling: case study of Loulé, Portugal. In Back to the Sense of the City: International Monograph Book (1118–1128). Paper presented at Virtual City and Territory, Centre de Política de Sòl i Valoracions. DOI:

Yagoub, M. M., Tesfaldet, Y. T., AlSumaiti, T., Al Hosani, N., & Elmubarak, M. G. (2024). Estimating population density using open-access satellite images and geographic information system: Case of Al Ain city, UAE. Remote Sensing Applications: Society and Environment, 33, 101122. DOI:

Yang, X., Ye, T., Zhao, N., Chen, Q., Yue, W., Qi, J., … Jia, P. (2019). Population Mapping with Multisensor Remote Sensing Images and Point-Of-Interest Data. Remote Sensing, 11(5), 574. DOI:

Zhao, X., Zhou, Y., Chen, W., Li, X., Li, X., & Li, D. (2021). Mapping hourly population dynamics using remotely sensed and geospatial data: a case study in Beijing, China. GIScience & Remote Sensing, 58(5), 717–732. DOI: