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ABSTRACT

This study primarily implements a building-level Binary 
Dasymetric Mapping (BDM) framework to analyse pop-
ulation change between 2011 and 2022 in Barje Čiflik, a 
rural settlement in southeastern Serbia experiencing long-
term depopulation. It extends the analysis with spatial 
and classical statistical methods. High-resolution ancillary 
data—including manually digitised building footprints, the 
number of storeys, and building function, all field-verified 
with abandoned dwellings identified during survey work—
were integrated with census counts to allocate population 
using volume-based weighting. 
Population estimates were assigned to each residential 
building to derive indicators of absolute and relative 
change, as well as density variation. The analysis combines 
spatial statistics (Global Moran’s I and Getis–Ord Gi*) with 
classical statistical techniques (Ordinary Least Squares 
regression, Spearman’s rank correlation, and LOWESS 
smoothing) to detect clustering, structural correlates, and 
spatial patterns of demographic change.
Results show that depopulation is spatially clustered, 
particularly in peripheral areas of the village, and that 
larger and multi-storey dwellings are more prone to de-
cline. While density change was modest and statistically 
dispersed, the study highlights nuanced household-level 
transformations that remain obscured in aggregated data.
The findings demonstrate that integrating BDM with sta-
tistical analysis provides a replicable and cost-effective tool 
for fine-scale demographic research in rural environments 
with limited data availability, thereby supporting method-
ological development and spatial planning.
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1	 INTRODUCTION

Accurate, spatially detailed population 
data are essential for demographic anal-
ysis, urban planning, and risk assess-
ment, particularly in rural areas facing 
depopulation. Conventional chorop-
leth maps, which aggregate population 
counts into administrative units, often 
obscure critical local variations and in-
troduce spatial artefacts due to the 
modifiable areal unit problem (MAUP) 
(Mennis 2009; Mennis and Hultgren 
2006; Zandbergen 2011). Dasymetric 
mapping techniques overcome these 
limitations by redistributing population 
data to more precise spatial units using 
ancillary datasets that reflect poten-
tial residential capacity (Baynes, Neale, 
and Hultgren 2022; Mennis and Hult-
gren 2006). 

Among the established approaches, 
binary dasymetric mapping (BDM) re-
mains a practical method in data-scarce 
contexts due to its low data require-
ments and transparency. It assumes a 
uniform distribution of population with-
in residential zones while excluding unin-
habited areas based on ancillary land use 
or building data (Cartagena-Colón, Mat-
tei, and Wang 2022; Mennis and Hult-
gren 2006). Although this assumption 
introduces potential errors in heteroge-
neous areas, recent studies have shown 
that integrating high-resolution ancillary 
data, such as building footprints, floor 
counts, and land use classifications, can 
significantly enhance the accuracy of 
population allocation (Pirowski and Szy-
puła 2024; Zandbergen 2011). 

Beyond simple allocation, combining 
dasymetric mapping with spatial statisti-
cal analysis enables a more profound in-
sight into demographic processes at fine 
spatial scales. Methods such as Moran’s 
I, OLS regression, and hotspot analysis al-

low the identification of spatial patterns, 
clusters, and correlates of population 
change, which are particularly relevant in 
rural environments. Recent studies have 
widely adopted these approaches to re-
fine demographic modelling and support 
targeted spatial interventions (Baynes, 
Neale, and Hultgren 2022; Chen 2021; 
Wooditch et al. 2021).

Despite growing methodological 
advances, studies that explore build-
ing-level population change over time 
remain limited, particularly in rural con-
texts. A recent study by Pajares et al. 
(2021) demonstrated the feasibility of 
combining top-down dasymetric disag-
gregation with bottom-up population 
estimation at the building level, using 
flexible, open-source tools adapted to 
data availability. However, such frame-
works have yet to be fully implemented 
in rural settlements with declining pop-
ulations, where the precision of alloca-
tion and spatial analysis of demographic 
dynamics are crucial.

Wan et al. (2023) also explored the 
use of landscape metrics as ancillary 
data in dasymetric mapping. Their re-
search revealed that landscape met-
rics, which quantify spatial patterns of 
land use and land cover, often outper-
form traditional ancillary datasets in 
predicting population distribution. By 
incorporating these metrics, the study 
achieved higher accuracy in population 
estimations across diverse geographic 
contexts, emphasising the value of in-
novative ancillary data sources in dasy-
metric mapping. 

These recent studies collectively 
demonstrate the ongoing evolution and 
refinement of dasymetric mapping tech-
niques. The integration of high-resolu-
tion ancillary datasets, whether through 
detailed building information or ad-
vanced landscape metrics, continues to 
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enhance the accuracy and applicability 
of population distribution models, par-
ticularly in areas where traditional data 
sources may be limited or outdated.

In Serbia, dasymetric mapping has 
been increasingly utilised to enhance 
the spatial resolution of population 
data, particularly for applications in risk 
analysis and spatial planning. Research-
ers have developed national- and re-
gional-level population models using 
soil sealing degrees, digital elevation 
models, and various GIS techniques, 
producing gridded outputs with sub-
stantially higher spatial fidelity than 
conventional choropleth maps (Krunić, 
Bajat, and Kilibarda 2015). Further stud-
ies have applied dasymetric mapping 
techniques to analyse demographic 
processes and their spatial manifesta-
tions. For instance, Krunic et al. (2018) 
employed dasymetric methods to exam-
ine the spatial aspects of demographic 
processes in Serbia, highlighting the im-
portance of integrating statistical and 
spatial data for effective urban and re-
gional planning. Additionally, Bajat et 
al. (2011) utilised dasymetric mapping 
to model population change indices in 
Southern Serbia from 1961 to 2027, 
demonstrating the influence of envi-
ronmental factors on population dy-
namics. In urban contexts, dasymetric 
modelling using soil-sealing data and 
building-height information has been 
demonstrated in Belgrade, where cen-
sus data from 2002 and 2011 were al-
located to finer spatial units through 
detailed urban ancillary inputs (Bajat et 
al. 2013). Gajić, Krunić, and Protić (2021) 
proposed a classification framework for 
rural areas in Serbia, integrating multi-
variate analysis and GIS tools to delin-
eate rural and urban areas, thereby fa-
cilitating targeted spatial planning and 
policy development.

This study advances methodological 
approaches by implementing a tempo-
rally comparative, building-level BDM 
framework to analyse the demograph-
ic change in Barje Čiflik, a rural settle-
ment in southeastern Serbia undergo-
ing long-term depopulation. Detailed 
ancillary data—derived from field sur-
veys, satellite imagery, and volumetric 
attributes—were integrated with the 
census counts from 2011 and 2022 to 
enable volume-preserving population 
disaggregation at the scale of individu-
al buildings. Beyond disaggregation, the 
study combines spatial statistics (Global 
Moran’s I and Getis–Ord Gi*) with classi-
cal statistical methods (Ordinary Least 
Squares regression, Spearman’s rank 
correlation, and LOWESS smoothing), 
providing a comprehensive examination 
of spatial clustering and structural cor-
relates of change. The findings demon-
strate that this multi-method frame-
work enhances the spatial precision of 
population modelling and offers a rep-
licable, data-efficient tool for capturing 
micro-scale demographic dynamics, with 
direct implications for rural planning 
and demographic policy in data-scarce 
contexts.

2	 MATERIALS AND METHODS

2.1	 AREA OF INTEREST

The study area is Barje Čiflik, located in 
the Pirot Municipality in southeastern 
Serbia. The administrative boundary of 
the settlement covers an area of 9.014 
km², while the populated area occupies 
0.39 km² (Figure 1).

The selection of Barje Čiflik as the 
case study location was motivated by 
clear long-term depopulation trends 
observed at the municipal and settle-
ment levels. Between 1948 and 2022, 
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offering insight into spatial patterns of 
demographic change at the micro-scale.

2.2	 METHODOLOGY

The methodological approach of this 
study integrates BDM with advanced 
spatial and statistical analyses to as-
sess temporal population change at the 
building level. The workflow encom-
passes four main phases: data prepa-
ration (including census data compi-
lation, spatial data acquisition, and 
field verification), population alloca-
tion to individual buildings, temporal 

the population of the Pirot Municipali-
ty decreased by nearly 30%, while the 
broader Pirot District lost more than a 
half of its inhabitants. Within this region-
al context, Barje Čiflik exemplifies a ru-
ral settlement experiencing continuous 
demographic decline, with its popula-
tion reduced by 38% over the past sev-
en decades. The pace of decline accel-
erated after 2002, when the settlement 
experienced a sharper loss of residents 
(Table 1). Such demographic dynamics 
make Barje Čiflik a representative and 
analytically valuable example of rural 
depopulation in southeastern Serbia, 

Figure 1 Study Area. 
Source: OpenStreetMap Contributors (2017), adapted by Author

Table 1 Historical population trends for the City of Pirot and the village of Barje Čiflik (1948–2022).

1948 1953 1961 1971 1981 1991 2002 2011 2022

Pirot District 160,285 157,360 145,789 136,008 127,427 116,926 105,654 92,479 76,700

Pirot Municipality 70,049 69,210 68,073 69,285 69,653 67,658 63,791 57,928 49,601

Barje Čiflik 820 790 775 765 782 788 693 594 507

Source: Statistical Office of the Republic of Serbia (2024)
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2.2.1  Data Collection

Population data were sourced from the 
Statistical Office of the Republic of Ser-
bia and represented official census fig-
ures for 2011 and 2022 (Statistical Of-
fice of the Republic of Serbia 2024). 
Building footprints were digitised us-
ing QGIS and historical imagery from 
Google Earth Pro, dated November 2013 
and July 2023, complemented by Open-
StreetMap data (OpenStreetMap Con-
tributors 2017). The field surveys, con-

and spatial-statistical analysis of demo-
graphic indicators, and cartographic vis-
ualisation (Figure 2). 

The data collection and spatial data 
compilation were performed using QGIS 
version 3.14 (QGIS Development Team 
2024) and Google Earth Pro version 
7.3 (Google 2020), while all statistical 
and spatial analyses were conducted in 
Python version 3.12 (Van Rossum and 
Drake 2009). The final cartographic vis-
ualisation and map layouts were pro-
duced in QGIS.

Figure 2 Workflow diagram for building-level dasymetric mapping and statistical analysis 
of population change 
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enabling reproducible and transparent 
processing of census and building data.

Geometric attributes were calculated 
to support the dasymetric allocation. The 
ground floor area of each building was 
derived from polygon geometry using 
GeoPandas (Jordahl et al. 2020), while 
the distance from the settlement centre 
was computed by identifying the aver-
age centroid of all buildings and measur-
ing the Euclidean distance of each object 
to that point using Shapely (Gillies et al. 
2024). These spatial metrics served as ex-
planatory variables in subsequent statis-
tical models, thereby enhancing the spa-
tial disaggregation framework.

Subsequently, the total weight was 
summed across all residential buildings 
within the settlement to establish a ref-
erence value for proportional distribu-
tion. Each building’s population share 
was then determined by dividing its 
weight by the total settlement weight, 
following the principle of volume-pre-
serving spatial disaggregation (Baynes, 
Neale, and Hultgren 2022).

Based on this share, population 
counts from the 2011 and 2022 cen-
suses were proportionally allocated to 
each building, generating building-lev-
el population estimates for both peri-
ods. This disaggregated data formed 
the basis for further temporal and spa-
tial analyses, consistent with dasymetric 
allocation approaches that have been 
proven effective in both urban and ru-
ral contexts (Cartagena-Colón, Mattei, 
and Wang 2022).

2.2.3  Temporal, Spatial, 
and Statistical Analysis

Temporal and spatial statistical analy-
sis were conducted to comprehensive-
ly evaluate demographic change at the 
building level between 2011 and 2022. 

ducted in May 2025, were carried out to 
verify the number of storeys, and iden-
tify abandoned or demolished residen-
tial buildings.

All spatial data were processed with-
in the QGIS 3.14 environment. Digitised 
vector layers were saved in shapefile 
(.shp) format, and attribute tables—in-
cluding census and building metadata—
were stored as comma-separated values 
(.csv) files. The coordinate reference sys-
tem EPSG:32634 (UTM Zone 34N) was 
applied to all spatial layers to maintain 
projection consistency throughout the 
analysis.

Despite field verification, classifying 
uninhabited structures may contain un-
certainties, particularly in intermittently 
occupied or seasonally used dwellings. 
These limitations reflect common chal-
lenges in verifying building status in rural 
areas and underscore the importance of 
supplementary validation sources, such 
as cadastral data, utility records, or com-
munity-based reporting, for improving 
future population allocation accuracy.

2.2.2  Population Allocation 

The population allocation to individu-
al buildings followed a multi-step pro-
cedure based on the BDM method, as 
introduced by Mennis and Hultgren 
(2006). First, a weighting factor was cal-
culated for each residential building by 
multiplying its ground floor area by the 
number of storeys, as verified during 
fieldwork. This factor served as a proxy 
for potential residential capacity and has 
been widely adopted in previous studies 
using building-based dasymetric models 
(Pirowski and Szypuła 2024; Zandbergen 
2011). All calculations and proportional 
allocations were implemented in Python 
using the Pandas (The pandas develop-
ment team 2024) and NumPy libraries, 
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or randomness at the local scale (Chen 
2021). The analyses were performed us-
ing the Python Spatial Analysis Library’s 
(PySAL) submodule Exploratory Spatial 
Data Analysis (esda) (Rey et al. 2015). 

Hotspot analysis using the Getis–
Ord Gi* statistic was applied to Δpop 
and Δdens. For Δpop, the Gi* test was 
used in an exploratory manner to pro-
vide a visual representation of poten-
tial localised clusters of depopulation, 
serving primarily as a complementary 
cartographic tool. For Δdens, the Gi* 
analysis was implemented as a formal 
statistical procedure to identify signif-
icant local clusters of intensification 
(hotspots) or decline (coldspots). The Ge-
tis–Ord Gi* is a spatial statistic that eval-
uates each feature in the context of its 
neighbouring features, detecting clus-
ters where high or low values are spa-
tially concentrated (Ord and Getis 1995; 
Rey et al. 2015). The analyses were per-
formed using the esda library in Python 
and verified in QGIS. 

The Gi* value for each feature is cal-
culated as follows in Equation 2:

Gi
* =  

∑ jwi, j xj –X̄ ∑ jwi, j
 � (2)

	 n∑ jwi, j xj – (∑ jwi, j) 

where xj  is the attribute value for fea-
ture j, wi, j  is the spatial weight between 
features i and j, X̄ is the mean of all at-
tribute values, S is the standard devia-
tion, and n is the total number of fea-
tures (Ord and Getis 1995).

In addition to spatial statistics, classi-
cal statistical methods were employed.

Ordinary Least Squares (OLS) re-
gression was employed to identify 
building-level factors influencing pop-
ulation change, incorporating variables 
such as building area, number of floors, 
and distance from the settlement cen-

�

S �
2

n–1

2

Following the proportional allocation of 
census population to individual residen-
tial buildings, a suite of derived indica-
tors was computed for each building to 
capture spatial and temporal dynamics:

a) Absolute population change 
(Δpop), defined as the difference in the 
estimated population between 2022 and 
2011, was calculated for each building. 
This metric provides a direct measure of 
demographic increase or decline, and is 
often used as a baseline for identifying 
spatial clusters of change (Mennis and 
Hultgren 2006; Zandbergen 2011);

b) Relative population change 
(Δ%) was computed as the percentage 
change relative to the 2011 baseline, 
with conditional logic applied to prevent 
division by zero for the buildings with 
zero initial population. The calculation 
was performed according to Equation 1:

Δ% = (  Δpop  ) × 100� (1)

Conditional logic was implemented 
to avoid division by zero, a standard ap-
proach in dasymetric modelling, where 
some buildings may have a baseline val-
ue of zero (Cartagena-Colón, Mattei, and 
Wang 2022);

c) Population density metrics were 
calculated for both years by dividing the 
estimated population by the building 
footprint area, yielding density 2011 and 
density 2022 attributes. The change in 
population density (Δdens) was subse-
quently derived as the difference be-
tween these two values.

A combination of spatial-statistical 
and classical statistical procedures was 
applied to the building-level indicators.

Spatial autocorrelation was as-
sessed using Global Moran’s I statistic 
to determine whether patterns of pop-
ulation change or density change exhib-
ited significant clustering, dispersion, 

pop 2011

�
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hic shifts relative to the 2011 ba-
seline.

•	 An Exploratory Hotspot Analysis 
of Δpop, based on the Getis–Ord 
Gi* statistic, provides a comple-
mentary visualisation of potential 
localised clusters of depopulation.

•	 The Spatial Residual Map displays 
the standardised residuals from 
the Ordinary Least Squares (OLS) 
regression model, enabling the 
detection of over- or under-pre-
dicted values for building-level 
population change.

•	 A Scatter Plot with LOWESS Cur-
ve visualises the relationship be-
tween the absolute population 
change and distance from the 
settlement centre, incorporating 
a locally weighted regression to 
capture potential non-linear spa-
tial trends.

•	 Population Density Maps depict 
the spatial distribution of the bu-
ilding-level population density for 
2011 and 2022 and the resulting 
Δdens, thereby identifying the zo-
nes of residential intensification 
and decline.

•	 A Hotspot Analysis of Δdens, per-
formed using the Getis–Ord Gi* 
statistic, identifies the statistical-
ly significant clusters of density 
increase (hotspots) and decrease 
(coldspots), offering further in-
sight into localised demographic 
reconfiguration.

All maps were created using QGIS 3, 
employing consistent classification 
schemes and symbology to ensure visual 
comparability. Python-based visualis-
ations were implemented using Matplot-
lib (Hunter 2007) and Seaborn (Waskom 
2021) libraries, facilitating static map-

tre. The OLS provides a global model 
that estimates the relationship between 
the dependent variable and one or more 
independent variables, offering insights 
into the factors that contribute to pop-
ulation dynamics (Wooditch et al. 2021). 
Model fitting and diagnostics were per-
formed in Python using the statsmodels 
package (Seabold and Perktold 2010).

Spearman’s rank correlation co-
efficient was calculated to examine 
the association between population 
change and distance from the settle-
ment centre. This non-parametric meas-
ure is suitable for assessing the strength 
and direction of monotonic relation-
ships between ranked variables (Lloyd 
2010; Sheskin 2020). It was used to 
test whether the buildings located fur-
ther from the settlement centre experi-
enced different patterns of population 
change compared to those closer to the 
centre. The analysis was implemented 
using Python’s scipy library (Virtanen 
et al. 2020).

2.2.4  Visualisation

The visualisation phase encompassed 
the cartographic and statistical rep-
resentation of the population dynam-
ics at the building level between 2011 
and 2022. Multiple map layers and plots 
were generated to facilitate the spa-
tial interpretation of the demographic 
change and its correlates:

•	 An Absolute Population Change 
Map illustrates the net change in 
the population per building, hig-
hlighting spatially differentiated 
patterns of growth and decline.

•	 The Relative Population Chan-
ge Map presents the percentage 
change in the population for each 
building, normalising demograp-
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ing one inhabitant. Relative population 
change varied, with one building show-
ing a 100% decrease, while most build-
ings (156) experienced stagnation. The 
spatial distribution of the population 
change revealed depopulation clusters, 
predominantly in the settlement’s pe-
ripheral areas. The maps of absolute 
and relative changes (Figure 3 and Fig-
ure 4) effectively highlighted these spa-
tial patterns.

The spatial autocorrelation of the 
building-level population change be-
tween 2011 and 2022 was assessed using 
Global Moran’s I statistic. For Δpop, Mo-
ran’s I value was 0.1953, with a z-score of 
6.62 and a p-value of 0.0010. These val-
ues indicate a statistically significant pos-
itive spatial autocorrelation, suggesting 

ping and exploratory data analysis. The 
resulting visual outputs are critical for 
interpreting demographic shifts and for-
mulating spatial policy.

3	 RESULTS

In 2022, the total area covered by build-
ings was 62,716.78 m², comprising 889 
structures. Residential buildings ac-
counted for 17,084.76 m², with no ob-
served spatial changes during the study 
period, and included 211 structures. 
Non-residential buildings increased 
slightly from 659 (44,093.91 m²) in 2011 
to 678 (45,632.02 m²) in 2022.

A significant population loss was re-
corded at the building level for 55 of 
the 211 residential buildings, each los-

Figure 3 Absolute population change at the 
building level between 2011 and 2022

Figure 4 Relative population change 
per building (2011–2022)
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The results (Figure 5) illustrate the ar-
eas where population loss appeared 
spatially concentrated, complementing 
Moran’s I findings of significant spatial 
autocorrelation.

Ordinary Least Squares (OLS) regres-
sion was conducted to identify the fac-
tors influencing building-level popula-
tion change between 2011 and 2022 
(Figure 6). 

The model included building area, 
number of floors, and distance from the 
settlement centre as explanatory varia-
bles. The analysis revealed that both the 
number of floors and the building area 
were significantly and negatively asso-
ciated with population change, indicat-
ing that larger and multi-storey build-
ings were more likely to experience a 

that buildings experiencing similar mag-
nitudes of population change tend to 
cluster spatially. Likewise, the change in 
population density per building (Δdens) 
exhibited a Moran’s I value of 0.1301, 
with a z-score of 4.22 and a p-value of 
0.0020, reflecting significant spatial clus-
tering. These results demonstrate that 
absolute and relative (density-based) de-
mographic shifts were not randomly dis-
tributed, but spatially structured within 
the study area. 

In addition to the global measure of 
spatial autocorrelation, an exploratory 
hotspot analysis using the Getis–Ord Gi* 
statistic was applied to Δpop. This anal-
ysis served as a complementary visual-
isation, highlighting localised clusters 
of depopulation at the building level. 

Figure 5 Hotspot map of building-level population decline (2011–2022)
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The relationship between popu-
lation change and distance from the 
settlement centre was assessed us-
ing Spearman’s rank correlation coeffi-
cient. The analysis revealed a statistical-
ly significant negative association (rho = 
–0.273, p < 0.001), suggesting that the 
buildings located further from the set-
tlement centre were more likely to ex-
perience population decline than those 
closer to the centre. The scatter plot 
(Figure 7) illustrates the relationship 
between the building-level population 
change (2011–2022) and the distance 
of each building from the settlement 
centre. Each point represents a resi-
dential building, while the red LOWESS 
curve provides a smoothed visualisation 
of the overall trend. The observed dis-
tribution reveals considerable variabili-
ty; however, a gradual downward slope 
in the trend line suggests a negative 
relationship. This graphical pattern is 
consistent with Spearman’s rank corre-
lation analysis results, which indicated 
a statistically significant negative asso-
ciation (rho = –0.273, p < 0.001). These 
findings imply that the buildings locat-
ed further from the settlement centre 
were more likely to experience a de-
cline in population during the observed 
period.

The population density was comput-
ed exclusively for residential buildings, 
as non-residential structures do not ac-
commodate a permanent population. 

population decline. Distance from the 
settlement centre was not a statistical-
ly significant predictor. The model as a 
whole was highly important, with the in-
cluded variables explaining nearly all of 
the variance in building-level population 
change (Table 2).

Table 2 Ordinary Least Squares Regression Results for Building-Level Population Change (2011–2022)

Variable β (coef) Std. Err. t p 95% CI

Intercept 0.4374 0.011 40.795 0.000 0.416 – 0.459

area –0.0050 0.0000986 –50.417 0.000 –0.005 – –0.005

floors –0.3996 0.008 –51.654 0.000 –0.415 – –0.384

dist_center 0.0000115 0.0000149 0.772 0.441 –0.0000178 – 0.0000408

Figure 6 Spatial distribution of standardised 
residuals from the OLS regression model 

for building-level population change 
(2011–2022) in Barje Čiflik
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significant spatial clustering. Therefore, 
a hotspot analysis using the Getis–Ord 
Gi* statistic was conducted.

The results indicate a complete ab-
sence of statistically significant spatial 
clusters: all residential buildings were 
classified as non-significant (Gi_Bin = 0), 
suggesting that the observed changes in 
density were randomly distributed and 
did not form spatially coherent patterns. 
This outcome is consistent with the nar-
row distribution of Δdens values (mean 
= –0.0032, median = 0), confirming that 
the demographic changes during the 
observed period were diffuse, rather 
than concentrated within specific resi-
dential zones.

Since the number, footprint area, and 
number of storeys of the residential 
buildings remained unchanged between 
2011 and 2022, all observed changes in 
population density per building are at-
tributable solely to demographic dynam-
ics, rather than to physical transforma-
tion or land use change (Figure 8). This 
allows for a focused analysis of popu-
lation redistribution, depopulation, or 
intensification within the existing resi-
dential stock.

While the spatial distribution of Δdens 
illustrates potential areas of residential 
intensification or decline (Figure 8), addi-
tional statistical testing is required to de-
termine whether these patterns exhibit 

Figure 7 Scatter plot of absolute building-level population change (2011–2022)  
versus distance from the settlement centre. Each point represents a residential building, 

and the red curve shows a locally weighted regression (LOWESS) trend.



STANOVNIŠTVO, 2025, 00(0), 1–20

I. Potić   |  13

depopulation process. The statistically 
significant positive spatial autocorrela-
tion (Moran’s I = 0.1953 for Δpop) sug-
gests that population loss is not random 
but clustered, particularly in peripher-
al parts of the village. These findings 
align with the established rural depop-
ulation patterns in southeastern Serbia, 
where demographic decline is spatially 
uneven and conditioned by location and 

4	 DISCUSSION

The results of this study reveal a nuan-
ced pattern of population change at the 
building level in Barje Čiflik between 
2011 and 2022. While the overall num-
ber of residential buildings remained 
constant, 55 out of 211 exhibited a 
decrease in population, reflecting a 
partial manifestation of the broader 

Figure 8 Spatial distribution of population density per building in 2011 and 2022,  
and change in density at the building level. The diverging colour scale highlights areas  

with the most significant intensification or decline in residential use.
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While this approach involves assump-
tions, it offers a replicable solution for 
micro-scale analysis in data-scarce en-
vironments. The demanding fieldwork 
required to verify storeys, functions, 
and occupancy further highlights the 
challenges of extending such analyses 
to larger settlements. In the future, ad-
vances in remote sensing and alterna-
tive ancillary datasets may offer more 
efficient ways to refine this method-
ology in contexts where input data re-
main limited.

Furthermore, only two census bench-
marks (2011 and 2022) were used, which 
limits the temporal depth of the analysis, 
while socio-economic covariates were 
not included as contextual controls. The 
absence of statistically significant Gi* 
hotspots for Δdens suggests that de-
mographic shifts were diffuse and weak-
ly concentrated locally, consistent with 
the gradual, household-level character 
of rural depopulation in Serbia.

The results of the classical statis-
tical analyses provide further insight. 
Contrary to expectations, larger and 
multi-storey buildings were more likely 
to experience population decline, sug-
gesting prior overestimation of capac-
ity or disproportionate outmigration 
from structurally dominant dwellings. 
The significance of building area and 
number of floors in the OLS model re-
flects their role in the allocation frame-
work itself. Rather than serving as an 
independent validation, the regression 
results highlight the structural corre-
lates embedded in the dasymetric log-
ic, confirming that larger dwellings are 
disproportionately affected by pop-
ulation decline. Meanwhile, distance 
from the settlement centre was not a 
statistically significant predictor in the 
OLS model, despite the Spearman cor-
relation indicating a modest negative 

infrastructure (Bajat et al. 2011; Krunić, 
Bajat, and Kilibarda 2015). The explor-
atory Gi hotspot analysis of absolute 
population change (Figure 5) provides 
additional visual confirmation of this 
pattern, highlighting localised clusters 
of depopulation at the building level in 
line with the significant spatial autocor-
relation identified by Moran’s I.

Nevertheless, the interpretation of 
these results requires caution. Based 
on floor area and number of storeys, 
the volumetric weighting factor pro-
vides a robust proxy for residential ca-
pacity; however, it assumes a consistent 
household size and occupancy across all 
structures. This assumption may over-
simplify demographic behaviours, es-
pecially in rural contexts marked by sea-
sonal migration, informal housing use, 
or partial abandonment. Additionally, 
the absence of statistically significant 
hot or cold spots in the Getis–Ord Gi* 
analysis for Δdens indicates that den-
sity shifts are diffuse and lack intense 
local concentration, potentially reflect-
ing the slow, household-level character 
of demographic change in rural Serbia. 
While building volume may not perfectly 
capture household size in rural settings 
where occupancy is more uniform, it 
provides a transparent and field-verified 
proxy that enables systematic allocation 
at the building level in the absence of 
household microdata. This limitation is 
acknowledged but does not undermine 
the value of comparing relative spatial 
patterns of change. A central limitation 
of this research is that official census 
data are only available at the settlement 
level, with no disaggregation to individ-
ual households. The absence of house-
hold-level population counts and de-
tailed dwelling structures necessitates 
an estimation procedure based on build-
ing volume as a proxy for these data. 
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ing volume-preserving disaggregation, 
thus achieving greater spatial specificity. 
Furthermore, applying spatial statistical 
methods (Global Moran’s I, Getis–Ord 
Gi*) together with classical statistical 
techniques (OLS regression, Spearman 
correlation) contributes a more analyti-
cally rich interpretation of demographic 
processes than the models focused sole-
ly on spatial redistribution.

The study by Pirowski and Szypuła 
(2024) provides a particularly relevant 
benchmark, as it demonstrates the ef-
ficacy of building volume in improving 
population allocation accuracy. Howev-
er, their work is oriented towards urban 
settings with dense and diverse building 
stock. By contrast, the current research 
tests the same principle in a sparsely 
populated rural settlement, broaden-
ing the empirical applicability of the 
volume-based dasymetric allocation. 
Similarly, Wan et al. (2023) advocate 
for integrating landscape metrics into 
population disaggregation; yet, such 
metrics are less effective in low-density, 
morphologically homogeneous villages. 
In this context, building-level ancillary 
data—field-verified and temporally dif-
ferentiated—remain the most effective 
tool for capturing subtle demographic 
dynamics.

Ultimately, this research provides 
a reproducible and resource-efficient 
methodology for fine-scale demograph-
ic analysis in rural environments where 
traditional data sources may be out-
dated or insufficient. The approach is 
well-suited for monitoring depopula-
tion, guiding rural revitalisation policies, 
and providing input for targeted spatial 
planning. A methodological limitation 
concerns the interpretation of very small 
residential units. In dwellings with only 
one or two inhabitants, the departure or 
loss of a single individual formally results 

association. This discrepancy highlights 
the potential for non-linear or contex-
tual factors—such as road access, land 
ownership, or family ties—to mediate 
the spatial logic of rural depopulation, 
which warrants deeper ethnographic 
or multivariate exploration. Where fea-
sible, it would also be valuable to test 
the spatial autocorrelation of residuals 
(for example, applying Moran’s I to OLS 
residuals) to evaluate potential spatial 
dependence not captured by the global 
regression model.

The methodological framework 
adopted in this study builds directly on 
the BDM approach developed by Men-
nis and Hultgren (2006) while expand-
ing its temporal dimension and enhanc-
ing spatial resolution. The integration of 
ground-verified building data and volu-
metric attributes, combined with spatial 
statistical tools, distinguishes this study 
from earlier BDM applications based 
solely on land use/land cover overlays 
(Cartagena-Colón, Mattei, and Wang 
2022; Zandbergen 2011). The focus on 
building-level disaggregation across two 
census years allows for a rare micro-scale 
temporal comparison in a rural context, 
addressing a gap noted by Pajares et al. 
(2021), who called for more implemen-
tations of flexible, open-source frame-
works for historical disaggregation.

Concerning research in Serbia, this 
study offers a significant advancement 
over prior approaches. While Bajat et 
al. (2011) and Krunić, Bajat, and Kilibar-
da (2015) demonstrated the utility of 
dasymetric mapping for national and re-
gional assessments, their models were 
based on gridded data with resolutions 
of 100 × 100 m or higher, relying primar-
ily on soil sealing proxies. The present 
study departs from these raster-based 
frameworks by allocating the population 
at the level of individual buildings us-
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Beyond methodological contribu-
tions, the study expands the applicability 
of BDM approaches to low-density rural 
contexts and highlights the importance 
of building-level ancillary data for cap-
turing micro-scale demographic trans-
formations. 

This study also faced several limita-
tions. One limitation of the analysis is 
that relative changes in small house-
holds may appear disproportionately 
large, as the loss of a single resident 
can represent a significant proportion 
of the entire population in that unit. 
This effect is inherent to micro-scale 
approaches and should be taken into 
account when interpreting the results. 
In addition, the classification of uninhab-
ited or seasonally occupied houses, al-
though field-verified, may involve uncer-
tainties typical of rural contexts. These 
limitations should be considered when 
interpreting the results. The conclusions 
presented here are based on modelled 
building-level estimates rather than di-
rect household counts. This approach 
reflects a trade-off between data avail-
ability and spatial precision. While it 
cannot fully capture household hetero-
geneity, it enables a fine-scale analysis 
of relative spatial patterns of change 
that would otherwise remain invisible. 
The most fundamental limitation aris-
es from the availability of census data 
only at the aggregate settlement level, 
without disaggregation at the house-
hold level. This constraint necessitated 
a modelled allocation approach, which 
represents an estimation rather than 
direct measurement. Despite this, the 
integration of volumetric proxies and 
field verification enabled the generation 
of fine-scale insights that would other-
wise remain inaccessible. This trade-off 
between precision and feasibility un-
derscores both the contribution and 

in a 100% decline. While this outcome is 
statistically correct, it may exaggerate 
the perceived magnitude of the change. 
This artefact is a common challenge of 
fine-scale dasymetric approaches and 
should be viewed as a statistical ampli-
fication rather than as a direct reflection 
of demographic processes.

These conclusions primarily reflect 
the studied local context and time 
frame; broader generalisations require 
further validation across diverse rural 
morphologies and socio-economic en-
vironments.

5	 CONCLUSION

This study demonstrates the potential of 
temporally comparative, building-level 
BDM for analysing population change in 
rural settlements. By allocating the cen-
sus data from 2011 and 2022 to individ-
ual residential buildings based on volu-
metric weighting factors, the research 
provides a high-resolution depiction of 
demographic dynamics in Barje Čiflik, 
southeastern Serbia. Integrating spatial 
methods (Global Moran’s I, Getis–Ord Gi* 
hotspot analysis) with classical statistical 
techniques (OLS regression, Spearman 
correlation) offers additional insights 
into the spatial structure and determi-
nants of population change.

The findings reveal that the popula-
tion decline is spatially clustered, par-
ticularly in peripheral zones, and larger 
and multi-storey buildings are dispro-
portionately affected. Although no sig-
nificant density-based hotspots were 
identified, the observed trends suggest 
a diffuse and gradual pattern of rural 
depopulation. The results underscore 
the importance of integrating dasym-
etric mapping with spatial analysis for 
small-area demographic research, par-
ticularly in data-limited contexts.
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population modelling further and sup-
port rural policy development. These 
conclusions primarily reflect the specif-
ic local and temporal context analysed 
here; broader generalisations require 
validation across diverse rural settings 
and socio-economic conditions.

the challenge of applying building-lev-
el dasymetric methods in rural demo-
graphic research.

Future work should explore the in-
tegration of socio-economic indicators, 
dynamic housing characteristics, and 
alternative validation sources to refine 
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Binarno dasimetrijsko mapiranje 
i prostorno-statistička analiza promene 
broja stanovnika na nivou objekata 
u ruralnoj Srbiji

PROŠIRENI SAŽETAK

Ovaj rad primarno primenjuje binarno dasimetrijsko mapiranje (BDM) na nivou objekata radi ana-
lize promena u broju stanovnika u seoskom naselju Barje Čiflik u jugoistočnoj Srbiji u periodu 
između dva popisa (2011–2022), dok analizu dodatno proširuje primenom prostornih i klasič-
nih statističkih metoda. Osnovni cilj istraživanja je razvoj metodološki pouzdanog i replikativnog 
pristupa koji omogućava preciznu procenu mikrodemografskih promena u uslovima ograničene 
dostupnosti podataka.
Stanovništvo je raspoređeno na pojedinačne stambene objekte primenom volumenskog indeksa 
– proizvoda prizemne površine i broja spratova – koji je verifikovan terenskim obilaskom, prilikom 
kojeg su identifikovani i napušteni objekti. Prostorni podaci su prikupljeni ručnim digitalizova-
njem na osnovu satelitskih snimaka visoke rezolucije i OpenStreetMap slojeva, dok je obrada 
izvršena u QGIS okruženju uz primenu koordinatnog sistema WGS 84 / UTM zona 34N. Tabelarni 
podaci iz popisa stanovništva integrisani su sa prostornim slojevima radi alokacije stanovništva 
na nivou objekata.
Na osnovu tako dezagregiranih podataka izračunati su indikatori apsolutne i relativne promene 
broja stanovnika i promene gustine. Prostorne i klasične statističke metode – Global Moran’s I, 
Getis–Ord Gi*, regresija običnih najmanjih kvadrata (OLS), Spirmanova korelacija i LOWESS anali-
za – primenjene su radi identifikacije obrazaca grupisanja, strukturnih faktora i prostornih tokova 
demografskih promena.
Rezultati pokazuju da je depopulacija prostorno grupisana, naročito u perifernim zonama na-
selja, dok su objekti veće površine i višespratnice češće beležili pad broja stanovnika. Uočene 
su i razlike u intenzitetu promena između centralnog jezgra i rubnih delova naselja, gde manji, 
prizemni objekti pokazuju veću stabilnost stanovništva. Promene gustine pokazuju visoku disper-
ziju i nisku statističku povezanost, ali ukazuju na suptilne transformacije na nivou domaćinsta-
va koje ostaju nevidljive u agregiranim podacima, naročito u slučajevima sezonskog boravka ili 
delimične napuštenosti objekata. Prostorna autokorelacija potvrđuje postojanje lokalnih žarišta 
demografskog opadanja, što naglašava potrebu za mikroanalitičkim pristupima u demografskom 
istraživanju ruralnih područja i ukazuje na značaj integrisanja prostornih i društvenih faktora u 
daljim analizama.
Istraživanje predstavlja metodološki doprinos u primeni BDM u ruralnim područjima sa ograni-
čenim podacima, pri čemu se postiže visoka prostorna rezolucija i omogućava procena dinamike 
stanovništva na nivou objekta. Kombinacija detaljnih prostornih podataka, statističkih metoda i 
terenske verifikacije pokazuje da predloženi okvir pruža donekle ekonomičan, replikativan i nauč-
no utemeljen model pogodan za praćenje depopulacije i podršku prostornom planiranju u okru-
ženjima sa ograničenim podacima.

KLJUČNE REČI

promena broja stanovnika, dasimetrijsko mapiranje, dezagregacija na nivou objekata, depopula-
cija ruralnih prostora, prostorna statistika


