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Building-Level Binary Dasymetric
Mapping and Spatial-Statistical Analysis
of Population Change in Rural Serbia

Ivan Poti¢ '

ABSTRACT

This study primarily implements a building-level Binary
Dasymetric Mapping (BDM) framework to analyse pop-
ulation change between 2011 and 2022 in Barje Ciflik, a
rural settlementin southeastern Serbia experiencing long-
term depopulation. It extends the analysis with spatial
and classical statistical methods. High-resolution ancillary
data—including manually digitised building footprints, the
number of storeys, and building function, all field-verified
with abandoned dwellings identified during survey work—
were integrated with census counts to allocate population
using volume-based weighting.

Population estimates were assigned to each residential
building to derive indicators of absolute and relative
change, as well as density variation. The analysis combines
spatial statistics (Global Moran's | and Getis—Ord Gi*) with
classical statistical techniques (Ordinary Least Squares
regression, Spearman’s rank correlation, and LOWESS
smoothing) to detect clustering, structural correlates, and
spatial patterns of demographic change.

Results show that depopulation is spatially clustered,
particularly in peripheral areas of the village, and that
larger and multi-storey dwellings are more prone to de-
cline. While density change was modest and statistically
dispersed, the study highlights nuanced household-level
transformations that remain obscured in aggregated data.
The findings demonstrate that integrating BDM with sta-
tistical analysis provides a replicable and cost-effective tool
for fine-scale demographic research in rural environments
with limited data availability, thereby supporting method-
ological development and spatial planning.
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1 INTRODUCTION

Accurate, spatially detailed population
data are essential for demographic anal-
ysis, urban planning, and risk assess-
ment, particularly in rural areas facing
depopulation. Conventional chorop-
leth maps, which aggregate population
counts into administrative units, often
obscure critical local variations and in-
troduce spatial artefacts due to the
modifiable areal unit problem (MAUP)
(Mennis 2009; Mennis and Hultgren
2006; Zandbergen 2011). Dasymetric
mapping techniques overcome these
limitations by redistributing population
data to more precise spatial units using
ancillary datasets that reflect poten-
tial residential capacity (Baynes, Neale,
and Hultgren 2022; Mennis and Hult-
gren 2006).

Among the established approaches,
binary dasymetric mapping (BDM) re-
mains a practical method in data-scarce
contexts due to its low data require-
ments and transparency. It assumes a
uniform distribution of population with-
in residential zones while excluding unin-
habited areas based on ancillary land use
or building data (Cartagena-Colén, Mat-
tei, and Wang 2022; Mennis and Hult-
gren 2006). Although this assumption
introduces potential errors in heteroge-
neous areas, recent studies have shown
that integrating high-resolution ancillary
data, such as building footprints, floor
counts, and land use classifications, can
significantly enhance the accuracy of
population allocation (Pirowski and Szy-
puta 2024; Zandbergen 2011).

Beyond simple allocation, combining
dasymetric mapping with spatial statisti-
cal analysis enables a more profound in-
sight into demographic processes at fine
spatial scales. Methods such as Moran'’s
I, OLS regression, and hotspot analysis al-

https://doi.org/10.59954/stnv.712

low the identification of spatial patterns,
clusters, and correlates of population
change, which are particularly relevantin
rural environments. Recent studies have
widely adopted these approaches to re-
fine demographic modelling and support
targeted spatial interventions (Baynes,
Neale, and Hultgren 2022; Chen 2021;
Wooditch et al. 2021).

Despite growing methodological
advances, studies that explore build-
ing-level population change over time
remain limited, particularly in rural con-
texts. A recent study by Pajares et al.
(2021) demonstrated the feasibility of
combining top-down dasymetric disag-
gregation with bottom-up population
estimation at the building level, using
flexible, open-source tools adapted to
data availability. However, such frame-
works have yet to be fully implemented
in rural settlements with declining pop-
ulations, where the precision of alloca-
tion and spatial analysis of demographic
dynamics are crucial.

Wan et al. (2023) also explored the
use of landscape metrics as ancillary
data in dasymetric mapping. Their re-
search revealed that landscape met-
rics, which quantify spatial patterns of
land use and land cover, often outper-
form traditional ancillary datasets in
predicting population distribution. By
incorporating these metrics, the study
achieved higher accuracy in population
estimations across diverse geographic
contexts, emphasising the value of in-
novative ancillary data sources in dasy-
metric mapping.

These recent studies collectively
demonstrate the ongoing evolution and
refinement of dasymetric mapping tech-
niques. The integration of high-resolu-
tion ancillary datasets, whether through
detailed building information or ad-
vanced landscape metrics, continues to



enhance the accuracy and applicability
of population distribution models, par-
ticularly in areas where traditional data
sources may be limited or outdated.

In Serbia, dasymetric mapping has
been increasingly utilised to enhance
the spatial resolution of population
data, particularly For applications in risk
analysis and spatial planning. Research-
ers have developed national- and re-
gional-level population models using
soil sealing degrees, digital elevation
models, and various GIS techniques,
producing gridded outputs with sub-
stantially higher spatial fidelity than
conventional choropleth maps (Kruni¢,
Bajat, and Kilibarda 2015). Further stud-
ies have applied dasymetric mapping
techniques to analyse demographic
processes and their spatial manifesta-
tions. For instance, Krunic et al. (2018)
employed dasymetric methods to exam-
ine the spatial aspects of demographic
processes in Serbia, highlighting the im-
portance of integrating statistical and
spatial data for effective urban and re-
gional planning. Additionally, Bajat et
al. (2011) utilised dasymetric mapping
to model population change indices in
Southern Serbia from 1961 to 2027,
demonstrating the influence of envi-
ronmental factors on population dy-
namics. In urban contexts, dasymetric
modelling using soil-sealing data and
building-height information has been
demonstrated in Belgrade, where cen-
sus data from 2002 and 2011 were al-
located to finer spatial units through
detailed urban ancillary inputs (Bajat et
al. 2013). Gaji¢, Kruni¢, and Proti¢ (2021)
proposed a classification framework for
rural areas in Serbia, integrating multi-
variate analysis and GIS tools to delin-
eate rural and urban areas, thereby fa-
cilitating targeted spatial planning and
policy development.
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This study advances methodological
approaches by implementing a tempo-
rally comparative, building-level BDM
framework to analyse the demograph-
ic change in Barje Ciflik, a rural settle-
ment in southeastern Serbia undergo-
ing long-term depopulation. Detailed
ancillary data—derived from field sur-
veys, satellite imagery, and volumetric
attributes—were integrated with the
census counts from 2011 and 2022 to
enable volume-preserving population
disaggregation at the scale of individu-
al buildings. Beyond disaggregation, the
study combines spatial statistics (Global
Moran'’s | and Getis—Ord Gi*) with classi-
cal statistical methods (Ordinary Least
Squares regression, Spearman’s rank
correlation, and LOWESS smoothing),
providing a comprehensive examination
of spatial clustering and structural cor-
relates of change. The findings demon-
strate that this multi-method frame-
work enhances the spatial precision of
population modelling and offers a rep-
licable, data-efficient tool for capturing
micro-scale demographic dynamics, with
direct implications for rural planning
and demographic policy in data-scarce
contexts.

2 MATERIALS AND METHODS
2.1 AREA OF INTEREST

The study area is Barje Ciflik, located in
the Pirot Municipality in southeastern
Serbia. The administrative boundary of
the settlement covers an area of 9.014
km?, while the populated area occupies
0.39 km? (Figure 1).

The selection of Barje Ciflik as the
case study location was motivated by
clear long-term depopulation trends
observed at the municipal and settle-
ment levels. Between 1948 and 2022,
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Figure 1 Study Area.
Source: OpenStreetMap Contributors (2017), adapted by Author

the population of the Pirot Municipali-
ty decreased by nearly 30%, while the
broader Pirot District lost more than a
half of its inhabitants. Within this region-
al context, Barje Ciflik exemplifies a ru-
ral settlement experiencing continuous
demographic decline, with its popula-
tion reduced by 38% over the past sev-
en decades. The pace of decline accel-
erated after 2002, when the settlement
experienced a sharper loss of residents
(Table 1). Such demographic dynamics
make Barje Ciflik a representative and
analytically valuable example of rural
depopulation in southeastern Serbia,

offering insight into spatial patterns of
demographic change at the micro-scale.

2.2 METHODOLOGY

The methodological approach of this
study integrates BDM with advanced
spatial and statistical analyses to as-
sess temporal population change at the
building level. The workflow encom-
passes four main phases: data prepa-
ration (including census data compi-
lation, spatial data acquisition, and
field verification), population alloca-
tion to individual buildings, temporal

Table 1 Historical population trends for the City of Pirot and the village of Barje Ciflik (1948-2022).

1948 1953 1961 1971 1981 1991 2002 2011 2022
Pirot District 160,285 157,360 145,789 136,008 127,427 116,926 105,654 92,479 76,700
Pirot Municipality 70,049 69,210 68,073 69,285 69,653 67,658 63,791 57,928 49,601
Barje Ciflik 820 790 775 765 782 788 693 594 507

Source: Statistical Office of the Republic of Serbia (2024)
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Data
Preparation

‘ Collect census data ’
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Figure 2 Workflow diagram for building-level dasymetric mapping and statistical analysis
of population change

and spatial-statistical analysis of demo-
graphicindicators, and cartographic vis-
ualisation (Figure 2).

The data collection and spatial data
compilation were performed using QGIS
version 3.14 (QGIS Development Team
2024) and Google Earth Pro version
7.3 (Google 2020), while all statistical
and spatial analyses were conducted in
Python version 3.12 (Van Rossum and
Drake 2009). The final cartographic vis-
ualisation and map layouts were pro-
duced in QGIS.

2.2.1 Data Collection

Population data were sourced from the
Statistical Office of the Republic of Ser-
bia and represented official census fig-
ures for 2011 and 2022 (Statistical Of-
fice of the Republic of Serbia 2024).
Building footprints were digitised us-
ing QGIS and historical imagery from
Google Earth Pro, dated November 2013
and July 2023, complemented by Open-
StreetMap data (OpenStreetMap Con-
tributors 2017). The field surveys, con-
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ductedin May 2025, were carried out to
verify the number of storeys, and iden-
tify abandoned or demolished residen-
tial buildings.

All spatial data were processed with-
in the QGIS 3.14 environment. Digitised
vector layers were saved in shapefile
(.shp) Format, and attribute tables—in-
cluding census and building metadata—
were stored as comma-separated values
(.csv) files. The coordinate reference sys-
tem EPSG:32634 (UTM Zone 34N) was
applied to all spatial layers to maintain
projection consistency throughout the
analysis.

Despite field verification, classifying
uninhabited structures may contain un-
certainties, particularly in intermittently
occupied or seasonally used dwellings.
These limitations reflect common chal-
lenges in verifying building status in rural
areas and underscore the importance of
supplementary validation sources, such
as cadastral data, utility records, or com-
munity-based reporting, for improving
future population allocation accuracy.

2.2.2 Population Allocation

The population allocation to individu-
al buildings followed a multi-step pro-
cedure based on the BDM method, as
introduced by Mennis and Hultgren
(2006). First, a weighting factor was cal-
culated for each residential building by
multiplying its ground floor area by the
number of storeys, as verified during
fieldwork. This factor served as a proxy
for potential residential capacity and has
been widely adopted in previous studies
using building-based dasymetric models
(Pirowski and Szyputa 2024; Zandbergen
2011). All calculations and proportional
allocations were implemented in Python
using the Pandas (The pandas develop-
ment team 2024) and NumPy libraries,
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enabling reproducible and transparent
processing of census and building data.

Geometric attributes were calculated
to support the dasymetric allocation. The
ground floor area of each building was
derived from polygon geometry using
GeoPandas (Jordahl et al. 2020), while
the distance from the settlement centre
was computed by identifying the aver-
age centroid of all buildings and measur-
ing the Euclidean distance of each object
to that point using Shapely (Gillies et al.
2024). These spatial metrics served as ex-
planatory variables in subsequent statis-
tical models, thereby enhancing the spa-
tial disaggregation framework.

Subsequently, the total weight was
summed across all residential buildings
within the settlement to establish a ref-
erence value for proportional distribu-
tion. Each building’s population share
was then determined by dividing its
weight by the total settlement weight,
following the principle of volume-pre-
serving spatial disaggregation (Baynes,
Neale, and Hultgren 2022).

Based on this share, population
counts from the 2011 and 2022 cen-
suses were proportionally allocated to
each building, generating building-lev-
el population estimates for both peri-
ods. This disaggregated data formed
the basis for further temporal and spa-
tial analyses, consistent with dasymetric
allocation approaches that have been
proven effective in both urban and ru-
ral contexts (Cartagena-Colén, Mattei,
and Wang 2022).

2.2.3 Temporal, Spatial,
and Statistical Analysis

Temporal and spatial statistical analy-
sis were conducted to comprehensive-
ly evaluate demographic change at the
building level between 2011 and 2022.



Following the proportional allocation of
census population to individual residen-
tial buildings, a suite of derived indica-
tors was computed for each building to
capture spatial and temporal dynamics:

a) Absolute population change
(Apop), defined as the difference in the
estimated population between 2022 and
2011, was calculated for each building.
This metric provides a direct measure of
demographicincrease or decline, and is
often used as a baseline for identifying
spatial clusters of change (Mennis and
Hultgren 2006; Zandbergen 2011);

b) Relative population change
(A%) was computed as the percentage
change relative to the 2011 baseline,
with conditional logic applied to prevent
division by zero for the buildings with
zero initial population. The calculation
was performed according to Equation 1:

Apo
0% = (5222 x 100 ()

Conditional logic was implemented
to avoid division by zero, a standard ap-
proach in dasymetric modelling, where
some buildings may have a baseline val-
ue of zero (Cartagena-Coldn, Mattei, and
Wang 2022);

c) Population density metrics were
calculated for both years by dividing the
estimated population by the building
footprint area, yielding density 2011 and
density 2022 attributes. The change in
population density (Adens) was subse-
quently derived as the difference be-
tween these two values.

A combination of spatial-statistical
and classical statistical procedures was
applied to the building-level indicators.

Spatial autocorrelation was as-
sessed using Global Moran’s | statistic
to determine whether patterns of pop-
ulation change or density change exhib-
ited significant clustering, dispersion,
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or randomness at the local scale (Chen
2021). The analyses were performed us-
ing the Python Spatial Analysis Library’s
(PySAL) submodule Exploratory Spatial
Data Analysis (esda) (Rey et al. 2015).

Hotspot analysis using the Getis—
Ord Gi* statistic was applied to Apop
and Adens. For Apop, the Gi* test was
used in an exploratory manner to pro-
vide a visual representation of poten-
tial localised clusters of depopulation,
serving primarily as a complementary
cartographic tool. For Adens, the Gi*
analysis was implemented as a formal
statistical procedure to identify signif-
icant local clusters of intensification
(hotspots) or decline (coldspots). The Ge-
tis—Ord Gi* is a spatial statistic that eval-
uates each feature in the context of its
neighbouring features, detecting clus-
ters where high or low values are spa-
tially concentrated (Ord and Getis 1995;
Rey et al. 2015). The analyses were per-
formed using the esda library in Python
and verified in QGIS.

The Gi* value for each feature is cal-
culated as follows in Equation 2:

G = S jWiyX=X Wi : 2)
S J ng,wiX—(Zwy)

n—1

where x; is the attribute value for fea-
ture j, w;; is the spatial weight between
features /and j, Xis the mean of all at-
tribute values, Sis the standard devia-
tion, and nis the total number of fea-
tures (Ord and Getis 1995).

In addition to spatial statistics, classi-
cal statistical methods were employed.

Ordinary Least Squares (OLS) re-
gression was employed to identify
building-level factors influencing pop-
ulation change, incorporating variables
such as building area, number of floors,
and distance from the settlement cen-
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tre. The OLS provides a global model
that estimates the relationship between
the dependent variable and one or more
independent variables, offering insights
into the factors that contribute to pop-
ulation dynamics (Wooditch et al. 2021).
Model fitting and diagnostics were per-
formed in Python using the statsmodels
package (Seabold and Perktold 2010).

Spearman’s rank correlation co-
efficient was calculated to examine
the association between population
change and distance from the settle-
ment centre. This non-parametric meas-
ure is suitable for assessing the strength
and direction of monotonic relation-
ships between ranked variables (Lloyd
2010; Sheskin 2020). It was used to
test whether the buildings located fur-
ther from the settlement centre experi-
enced different patterns of population
change compared to those closer to the
centre. The analysis was implemented
using Python's scipy library (Virtanen
et al. 2020).

2.2.4 Visualisation

The visualisation phase encompassed
the cartographic and statistical rep-
resentation of the population dynam-
ics at the building level between 2011
and 2022. Multiple map layers and plots
were generated to facilitate the spa-
tial interpretation of the demographic
change and its correlates:

« An Absolute Population Change
Map illustrates the net change in
the population per building, hig-
hlighting spatially differentiated
patterns of growth and decline.

« The Relative Population Chan-
ge Map presents the percentage
change in the population for each
building, normalising demograp-
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hic shifts relative to the 2011 ba-
seline.

« An Exploratory Hotspot Analysis
of Apop, based on the Getis—Ord
Gi* statistic, provides a comple-
mentary visualisation of potential
localised clusters of depopulation.

« The Spatial Residual Map displays
the standardised residuals from
the Ordinary Least Squares (OLS)
regression model, enabling the
detection of over- or under-pre-
dicted values for building-level
population change.

« A Scatter Plot with LOWESS Cur-
ve visualises the relationship be-
tween the absolute population
change and distance from the
settlement centre, incorporating
a locally weighted regression to
capture potential non-linear spa-
tial trends.

« Population Density Maps depict
the spatial distribution of the bu-
ilding-level population density for
2011 and 2022 and the resulting
Adens, thereby identifying the zo-
nes of residential intensification
and decline.

« A Hotspot Analysis of Adens, per-
formed using the Getis—Ord Gi*
statistic, identifies the statistical-
ly significant clusters of density
increase (hotspots) and decrease
(coldspots), offering further in-
sight into localised demographic
reconfiguration.

All maps were created using QGIS 3,
employing consistent classification
schemes and symbology to ensure visual
comparability. Python-based visualis-
ations were implemented using Matplot-
lib (Hunter 2007) and Seaborn (Waskom
2021) libraries, Facilitating static map-



ping and exploratory data analysis. The
resulting visual outputs are critical for
interpreting demographic shifts and for-
mulating spatial policy.

3 RESULTS

In 2022, the total area covered by build-
ings was 62,716.78 m?, comprising 889
structures. Residential buildings ac-
counted for 17,084.76 m?, with no ob-
served spatial changes during the study
period, and included 211 structures.
Non-residential buildings increased
slightly from 659 (44,093.91 m?) in 2011
to 678 (45,632.02 m?) in 2022.

A significant population loss was re-
corded at the building level for 55 of
the 211 residential buildings, each los-

Figure 3 Absolute population change at the
building level between 2011 and 2022
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ing one inhabitant. Relative population
change varied, with one building show-
ing a 100% decrease, while most build-
ings (156) experienced stagnation. The
spatial distribution of the population
change revealed depopulation clusters,
predominantly in the settlement’s pe-
ripheral areas. The maps of absolute
and relative changes (Figure 3 and Fig-
ure 4) effectively highlighted these spa-
tial patterns.

The spatial autocorrelation of the
building-level population change be-
tween 2011 and 2022 was assessed using
Global Moran'’s | statistic. For Apop, Mo-
ran’s | value was 0.1953, with a z-score of
6.62 and a p-value of 0.0010. These val-
ues indicate a statistically significant pos-
itive spatial autocorrelation, suggesting

Figure 4 Relative population change
per building (2011-2022)

STANOVNISTVO, 2025, 00(0), 1-20
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Figure 5 Hotspot map of building-level population decline (2011-2022)

that buildings experiencing similar mag-
nitudes of population change tend to
cluster spatially. Likewise, the change in
population density per building (Adens)
exhibited a Moran'’s | value of 0.1301,
with a z-score of 4.22 and a p-value of
0.0020, reflecting significant spatial clus-
tering. These results demonstrate that
absolute and relative (density-based) de-
mographic shifts were not randomly dis-
tributed, but spatially structured within
the study area.

In addition to the global measure of
spatial autocorrelation, an exploratory
hotspot analysis using the Getis—Ord Gi*
statistic was applied to Apop. This anal-
ysis served as a complementary visual-
isation, highlighting localised clusters
of depopulation at the building level.
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The results (Figure 5) illustrate the ar-
eas where population loss appeared
spatially concentrated, complementing
Moran's | findings of significant spatial
autocorrelation.

Ordinary Least Squares (OLS) regres-
sion was conducted to identify the fac-
tors influencing building-level popula-
tion change between 2011 and 2022
(Figure 6).

The model included building area,
number of floors, and distance from the
settlement centre as explanatory varia-
bles. The analysis revealed that both the
number of floors and the building area
were significantly and negatively asso-
ciated with population change, indicat-
ing that larger and multi-storey build-
ings were more likely to experience a
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Table 2 Ordinary Least Squares Regression Results for Building-Level Population Change (2011-2022)

Variable B (coef) Std. Err. t p 95% ClI
Intercept 0.4374 0.011 40.795 0.000 0.416-0.459
area -0.0050 0.0000986 -50.417 0.000 -0.005--0.005
floors -0.3996 0.008 -51.654 0.000 -0.415--0.384
dist_center 0.0000115 0.0000149 0.772 0.441 -0.0000178 - 0.0000408

population decline. Distance from the
settlement centre was not a statistical-
ly significant predictor. The model as a
whole was highly important, with the in-
cluded variables explaining nearly all of
the variance in building-level population
change (Table 2).

Figure 6 Spatial distribution of standardised
residuals from the OLS regression model
for building-level population change
(2011-2022) in Barje Ciflik

The relationship between popu-
lation change and distance from the
settlement centre was assessed us-
ing Spearman’s rank correlation coeffi-
cient. The analysis revealed a statistical-
ly significant negative association (rho =
—0.273, p< 0.001), suggesting that the
buildings located further from the set-
tlement centre were more likely to ex-
perience population decline than those
closer to the centre. The scatter plot
(Figure 7) illustrates the relationship
between the building-level population
change (2011-2022) and the distance
of each building from the settlement
centre. Each point represents a resi-
dential building, while the red LOWESS
curve provides a smoothed visualisation
of the overall trend. The observed dis-
tribution reveals considerable variabili-
ty; however, a gradual downward slope
in the trend line suggests a negative
relationship. This graphical pattern is
consistent with Spearman’s rank corre-
lation analysis results, which indicated
a statistically significant negative asso-
ciation (rho =-0.273, p < 0.001). These
findings imply that the buildings locat-
ed further from the settlement centre
were more likely to experience a de-
cline in population during the observed
period.

The population density was comput-
ed exclusively for residential buildings,
as non-residential structures do not ac-
commodate a permanent population.

STANOVNISTVO, 2025, 00(0), 1-20



12 | Building-Level Binary Dasymetric Mapping and Spatial-Statistical Analysis of Population Change in Rural Serbia

Figure 7 Scatter plot of absolute building-level population change (2011-2022)
versus distance from the settlement centre. Each point represents a residential building,
and the red curve shows a locally weighted regression (LOWESS) trend.

Since the number, footprint area, and
number of storeys of the residential
buildings remained unchanged between
2011 and 2022, all observed changes in
population density per building are at-
tributable solely to demographic dynam-
ics, rather than to physical transforma-
tion or land use change (Figure 8). This
allows for a focused analysis of popu-
lation redistribution, depopulation, or
intensification within the existing resi-
dential stock.

While the spatial distribution of Adens
illustrates potential areas of residential
intensification or decline (Figure 8), addi-
tional statistical testing is required to de-
termine whether these patterns exhibit

https://doi.org/10.59954/stnv.712

significant spatial clustering. Therefore,
a hotspot analysis using the Getis—Ord
Gi* statistic was conducted.

The results indicate a complete ab-
sence of statistically significant spatial
clusters: all residential buildings were
classified as non-significant (Gi_Bin = 0),
suggesting that the observed changesin
density were randomly distributed and
did not form spatially coherent patterns.
This outcome is consistent with the nar-
row distribution of Adens values (mean
=-0.0032, median = 0), confirming that
the demographic changes during the
observed period were diffuse, rather
than concentrated within specific resi-
dential zones.
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Figure 8 Spatial distribution of population density per building in 2011 and 2022,
and change in density at the building level. The diverging colour scale highlights areas
with the most significant intensification or decline in residential use.

4 DISCUSSION

The results of this study reveal a nuan-
ced pattern of population change at the
building level in Barje Ciflik between
2011 and 2022. While the overall num-
ber of residential buildings remained
constant, 55 out of 211 exhibited a
decrease in population, reflecting a
partial manifestation of the broader

depopulation process. The statistically
significant positive spatial autocorrela-
tion (Moran's | = 0.1953 for Apop) sug-
gests that population loss is not random
but clustered, particularly in peripher-
al parts of the village. These findings
align with the established rural depop-
ulation patternsin southeastern Serbia,
where demographic decline is spatially
uneven and conditioned by location and

STANOVNISTVO, 2025, 00(0), 1-20
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infrastructure (Bajat et al. 2011; Kruni,
Bajat, and Kilibarda 2015). The explor-
atory Gi hotspot analysis of absolute
population change (Figure 5) provides
additional visual confirmation of this
pattern, highlighting localised clusters
of depopulation at the building level in
line with the significant spatial autocor-
relation identified by Moran’s I.
Nevertheless, the interpretation of
these results requires caution. Based
on floor area and number of storeys,
the volumetric weighting factor pro-
vides a robust proxy for residential ca-
pacity; however, it assumes a consistent
household size and occupancy across all
structures. This assumption may over-
simplify demographic behaviours, es-
pecially in rural contexts marked by sea-
sonal migration, informal housing use,
or partial abandonment. Additionally,
the absence of statistically significant
hot or cold spots in the Getis—Ord Gi*
analysis for Adens indicates that den-
sity shifts are diffuse and lack intense
local concentration, potentially reflect-
ing the slow, household-level character
of demographic change in rural Serbia.
While building volume may not perfectly
capture household size in rural settings
where occupancy is more uniform, it
provides a transparent and field-verified
proxy that enables systematic allocation
at the building level in the absence of
household microdata. This limitation is
acknowledged but does not undermine
the value of comparing relative spatial
patterns of change. A central limitation
of this research is that official census
data are only available at the settlement
level, with no disaggregation to individ-
ual households. The absence of house-
hold-level population counts and de-
tailed dwelling structures necessitates
an estimation procedure based on build-
ing volume as a proxy for these data.
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While this approach involves assump-
tions, it offers a replicable solution for
micro-scale analysis in data-scarce en-
vironments. The demanding fieldwork
required to verify storeys, functions,
and occupancy further highlights the
challenges of extending such analyses
to larger settlements. In the future, ad-
vances in remote sensing and alterna-
tive ancillary datasets may offer more
efficient ways to refine this method-
ology in contexts where input data re-
main limited.

Furthermore, only two census bench-
marks (2011 and 2022) were used, which
limits the temporal depth of the analysis,
while socio-economic covariates were
notincluded as contextual controls. The
absence of statistically significant Gi*
hotspots for Adens suggests that de-
mographic shifts were diffuse and weak-
ly concentrated locally, consistent with
the gradual, household-level character
of rural depopulation in Serbia.

The results of the classical statis-
tical analyses provide further insight.
Contrary to expectations, larger and
multi-storey buildings were more likely
to experience population decline, sug-
gesting prior overestimation of capac-
ity or disproportionate outmigration
from structurally dominant dwellings.
The significance of building area and
number of floors in the OLS model re-
flects their role in the allocation frame-
work itself. Rather than serving as an
independent validation, the regression
results highlight the structural corre-
lates embedded in the dasymetric log-
ic, confirming that larger dwellings are
disproportionately affected by pop-
ulation decline. Meanwhile, distance
from the settlement centre was not a
statistically significant predictor in the
OLS model, despite the Spearman cor-
relation indicating a modest negative



association. This discrepancy highlights
the potential for non-linear or contex-
tual factors—such as road access, land
ownership, or family ties—to mediate
the spatial logic of rural depopulation,
which warrants deeper ethnographic
or multivariate exploration. Where fea-
sible, it would also be valuable to test
the spatial autocorrelation of residuals
(For example, applying Moran’s | to OLS
residuals) to evaluate potential spatial
dependence not captured by the global
regression model.

The methodological framework
adopted in this study builds directly on
the BDM approach developed by Men-
nis and Hultgren (2006) while expand-
ing its temporal dimension and enhanc-
ing spatial resolution. The integration of
ground-verified building data and volu-
metric attributes, combined with spatial
statistical tools, distinguishes this study
from earlier BDM applications based
solely on land use/land cover overlays
(Cartagena-Coldén, Mattei, and Wang
2022; Zandbergen 2011). The focus on
building-level disaggregation across two
census years allows for a rare micro-scale
temporal comparison in a rural context,
addressing a gap noted by Pajares et al.
(2021), who called for more implemen-
tations of flexible, open-source frame-
works for historical disaggregation.

Concerning research in Serbia, this
study offers a significant advancement
over prior approaches. While Bajat et
al. (2011) and Kruni¢, Bajat, and Kilibar-
da (2015) demonstrated the utility of
dasymetric mapping for national and re-
gional assessments, their models were
based on gridded data with resolutions
of 100 x 100 m or higher, relying primar-
ily on soil sealing proxies. The present
study departs from these raster-based
frameworks by allocating the population
at the level of individual buildings us-
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ing volume-preserving disaggregation,
thus achieving greater spatial specificity.
Furthermore, applying spatial statistical
methods (Global Moran’s I, Getis—Ord
Gi*) together with classical statistical
techniques (OLS regression, Spearman
correlation) contributes a more analyti-
cally rich interpretation of demographic
processes than the models focused sole-
ly on spatial redistribution.

The study by Pirowski and Szyputa
(2024) provides a particularly relevant
benchmark, as it demonstrates the ef-
ficacy of building volume in improving
population allocation accuracy. Howev-
er, their work is oriented towards urban
settings with dense and diverse building
stock. By contrast, the current research
tests the same principle in a sparsely
populated rural settlement, broaden-
ing the empirical applicability of the
volume-based dasymetric allocation.
Similarly, Wan et al. (2023) advocate
for integrating landscape metrics into
population disaggregation; yet, such
metrics are less effective in low-density,
morphologically homogeneous villages.
In this context, building-level ancillary
data—field-verified and temporally dif-
ferentiated—remain the most effective
tool for capturing subtle demographic
dynamics.

Ultimately, this research provides
a reproducible and resource-efficient
methodology for fine-scale demograph-
ic analysis in rural environments where
traditional data sources may be out-
dated or insufficient. The approach is
well-suited for monitoring depopula-
tion, guiding rural revitalisation policies,
and providing input for targeted spatial
planning. A methodological limitation
concerns the interpretation of very small
residential units. In dwellings with only
one or two inhabitants, the departure or
loss of a single individual formally results
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ina 100% decline. While this outcome is
statistically correct, it may exaggerate
the perceived magnitude of the change.
This artefact is a common challenge of
fine-scale dasymetric approaches and
should be viewed as a statistical ampli-
fication rather than as a direct reflection
of demographic processes.

These conclusions primarily reflect
the studied local context and time
frame; broader generalisations require
further validation across diverse rural
morphologies and socio-economic en-
vironments.

5 CONCLUSION

This study demonstrates the potential of
temporally comparative, building-level
BDM for analysing population change in
rural settlements. By allocating the cen-
sus data from 2011 and 2022 to individ-
ual residential buildings based on volu-
metric weighting factors, the research
provides a high-resolution depiction of
demographic dynamics in Barje Ciflik,
southeastern Serbia. Integrating spatial
methods (Global Moran’s |, Getis—Ord Gi*
hotspot analysis) with classical statistical
techniques (OLS regression, Spearman
correlation) offers additional insights
into the spatial structure and determi-
nants of population change.

The findings reveal that the popula-
tion decline is spatially clustered, par-
ticularly in peripheral zones, and larger
and multi-storey buildings are dispro-
portionately affected. Although no sig-
nificant density-based hotspots were
identified, the observed trends suggest
a diffuse and gradual pattern of rural
depopulation. The results underscore
the importance of integrating dasym-
etric mapping with spatial analysis for
small-area demographic research, par-
ticularly in data-limited contexts.
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Beyond methodological contribu-
tions, the study expands the applicability
of BDM approaches to low-density rural
contexts and highlights the importance
of building-level ancillary data for cap-
turing micro-scale demographic trans-
formations.

This study also faced several limita-
tions. One limitation of the analysis is
that relative changes in small house-
holds may appear disproportionately
large, as the loss of a single resident
can represent a significant proportion
of the entire population in that unit.
This effect is inherent to micro-scale
approaches and should be taken into
account when interpreting the results.
In addition, the classification of uninhab-
ited or seasonally occupied houses, al-
though field-verified, may involve uncer-
tainties typical of rural contexts. These
limitations should be considered when
interpreting the results. The conclusions
presented here are based on modelled
building-level estimates rather than di-
rect household counts. This approach
reflects a trade-off between data avail-
ability and spatial precision. While it
cannot fully capture household hetero-
geneity, it enables a fine-scale analysis
of relative spatial patterns of change
that would otherwise remain invisible.
The most fundamental limitation aris-
es from the availability of census data
only at the aggregate settlement level,
without disaggregation at the house-
hold level. This constraint necessitated
a modelled allocation approach, which
represents an estimation rather than
direct measurement. Despite this, the
integration of volumetric proxies and
field verification enabled the generation
of fine-scale insights that would other-
wise remain inaccessible. This trade-off
between precision and feasibility un-
derscores both the contribution and



the challenge of applying building-lev-
el dasymetric methods in rural demo-
graphic research.

Future work should explore the in-
tegration of socio-economic indicators,
dynamic housing characteristics, and
alternative validation sources to refine
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population modelling further and sup-
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and socio-economic conditions.
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Binarno dasimetrijsko mapiranje

i prostorno-statisticka analiza promene
broja stanovnika na nivou objekata

u ruralnoj Srbiji

PROSIRENI SAZETAK

Ovaj rad primarno primenjuje binarno dasimetrijsko mapiranje (BDM) na nivou objekata radi ana-
lize promena u broju stanovnika u seoskom naselju Barje Ciflik u jugoisto¢noj Srbiji u periodu
izmedu dva popisa (2011-2022), dok analizu dodatno prosiruje primenom prostornih i klasic-
nih statistickih metoda. Osnovni cilj istrazivanja je razvoj metodoloski pouzdanog i replikativhog
pristupa koji omogucava preciznu procenu mikrodemografskih promena u uslovima ograni¢ene
dostupnosti podataka.

Stanovnistvo je rasporedeno na pojedinacne stambene objekte primenom volumenskog indeksa
— proizvoda prizemne povrsine i broja spratova — koji je verifikovan terenskim obilaskom, prilikom
kojeg su identifikovani i napusteni objekti. Prostorni podaci su prikupljeni ru¢nim digitalizova-
njem na osnovu satelitskih snimaka visoke rezolucije i OpenStreetMap slojeva, dok je obrada
izvrSena u QGIS okruzenju uz primenu koordinatnog sistema WGS 84 / UTM zona 34N. Tabelarni
podaci iz popisa stanovnistva integrisani su sa prostornim slojevima radi alokacije stanovnistva
na nivou objekata.

Na osnovu tako dezagregiranih podataka izracunati su indikatori apsolutne i relativne promene
broja stanovnika i promene gustine. Prostorne i klasi¢ne statisticke metode — Global Moran's |,
Getis—Ord Gi*, regresija obi¢nih najmanjih kvadrata (OLS), Spirmanova korelacija i LOWESS anali-
za— primenjene su radi identifikacije obrazaca grupisanja, strukturnih faktora i prostornih tokova
demografskih promena.

Rezultati pokazuju da je depopulacija prostorno grupisana, narocito u perifernim zonama na-
selja, dok su objekti vec¢e povrsine i visespratnice cesce belezili pad broja stanovnika. Uocene
su i razlike u intenzitetu promena izmedu centralnog jezgra i rubnih delova naselja, gde maniji,
prizemni objekti pokazuju vecéu stabilnost stanovnistva. Promene gustine pokazuju visoku disper-
ziju i nisku statisticku povezanost, ali ukazuju na suptilne transformacije na nivou domadinsta-
va koje ostaju nevidljive u agregiranim podacima, narocito u slucajevima sezonskog boravka ili
delimi¢ne napustenosti objekata. Prostorna autokorelacija potvrduje postojanje lokalnih Zarista
demografskog opadanja, Sto naglasava potrebu za mikroanalitickim pristupima u demografskom
istrazivanju ruralnih podrudja i ukazuje na znacaj integrisanja prostornih i drustvenih faktora u
daljim analizama.

Istrazivanje predstavlja metodoloski doprinos u primeni BDM u ruralnim podrucjima sa ograni-
¢enim podacima, pri ¢emu se postize visoka prostorna rezolucija i omoguéava procena dinamike
stanovnistva na nivou objekta. Kombinacija detaljnih prostornih podataka, statistickih metoda i
terenske verifikacije pokazuje da predlozeni okvir pruza donekle ekonomican, replikativan i nauc-
no utemeljen model pogodan za pracenje depopulacije i podrsku prostornom planiranju u okru-
Zenjima sa ograni¢enim podacima.
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promena broja stanovnika, dasimetrijsko mapiranje, dezagregacija na nivou objekata, depopula-
cija ruralnih prostora, prostorna statistika
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